
Developer’s Reference
(XML)
Release 4.0
December 2007
Part number 010-00551bc

This manual supports Messaging Operating System (MOS) release 3.9.0 and later MOS releases
until replaced by a newer edition.

 may

tware,

essage
This manual and Mirapoint software are copyright © 1998-2007 Mirapoint Software, Inc. All rights reserved. You
not print, copy, reproduce, modify, distribute or display this work in hard copy, electronic, or any other form, in
whole or in part, by any electronic, mechanical, or other means, without the prior written consent of Mirapoint Sof
Inc., except that you are permitted to make one copy for archival purposes only in connection with the lawful
use and operation of this software.

Mirapoint, RazorGate, and the Mirapoint logo are registered trademarks of Mirapoint Software, Inc. Mirapoint M
Server, Mirapoint Directory Server, Mirapoint Operations Console, RazorSafe, DirectPath, WebMail Direct,
WebCal Direct, and GroupCal Direct are trademarks of Mirapoint Software, Inc.

Portions of this product are Copyright © 1982, 1986, 1989, 1991, 1993 the Regents of the University of
California. All Rights Reserved.

Portions of this product are Copyright © 1997, 1998 FreeBSD, Inc. All Rights Reserved.

Portions of this product are Copyright © 1996-1998 Carnegie Mellon University. All Rights Reserved.

Portions of this product are Copyright © 1997-1998 the Apache Group. All Rights Reserved.

Portions of this product are Copyright © 1987-1997 Larry Wall. All Rights Reserved. See http://www.perl.org.

Portions of this product are Copyright © 1990, 1993-1997 Sleepycat Software. All Rights Reserved.

This software is derived in part from the SSLava™ Toolkit, which is Copyright © 1996-1998 by Phaos
Technology Corporation. All Rights Reserved.

This software is derived in part from Red Hat Enterprise Linux, which is Copyright © 2005 Red Hat, Inc. All
rights reserved.

Portions of this product are Copyright © 1998, 1999, 2000 Bruce Verderaime. All Rights Reserved.

The OpenLDAP Public License Version 2.8, 17 August 2003

Redistribution and use of this software and associated documentation ("Software"), with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions in source form must retain copyright statements and notices,

2. Redistributions in binary form must reproduce applicable copyright statements and notices, this list of
conditions, and the following disclaimer in the documentation and/or other materials provided with the
distribution, and

3. Redistributions must contain a verbatim copy of this document.

The OpenLDAP Foundation may revise this license from time to time. Each revision is distinguished by a
version number. You may use this Software under terms of this license revision or under the terms of any
subsequent revision of the license.

THIS SOFTWARE IS PROVIDED BY THE OPENLDAP FOUNDATION AND ITS CONTRIBUTORS ̀ `AS IS''
AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE OPENLDAP FOUNDATION, ITS CONTRIBUTORS, OR THE
AUTHOR(S) OR OWNER(S) OF THE SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

The names of the authors and copyright holders must not be used in advertising or otherwise to promote the
sale, use or other dealing in this Software without specific, written prior permission. Title to copyright in this
Software shall at all times remain with copyright holders.

OpenLDAP is a registered trademark of the OpenLDAP Foundation.

Copyright 1999-2003 The OpenLDAP Foundation, Redwood City, California, USA. All Rights Reserved.
Permission to copy and distribute verbatim copies of this document is granted.

H THE
Macintosh is a trademark of Apple Computer, Inc.

Windows, Outlook, Exchange, and Active Directory are trademarks of Microsoft Corporation.

Java and Solaris are trademarks of Sun Microsystems, Inc.

Linux is a registered trademark of Linus Torvalds.

All other trademarks are the property of their respective owners.

OTHER THAN ANY EXPRESS LIMITED WARRANTIES THAT MIRAPOINT PROVIDES TO YOU IN
WRITING, MIRAPOINT AND MIRAPOINT'S LICENSORS PROVIDE THE SOFTWARE TO YOU “AS IS”
AND EXPRESSLY DISCLAIM ALL WARRANTIES AND/OR CONDITIONS, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL MIRAPOINT'S LICENSORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL
DAMAGES, HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY (INCLUDING NEGLIGENCE
OR OTHER TORT), ARISING IN ANY WAY OUT OF YOUR USE OF THE SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF DAMAGES. Mirapoint's liability shall be as limited in the License
Agreement.

MIRAPOINT SOFTWARE, INC. SOFTWARE LICENSE AGREEMENT

PLEASE READ THIS SOFTWARE LICENSE AGREEMENT (“LICENSE”) CAREFULLY BEFORE
DOWNLOADING OR OTHERWISE USING THE SOFTWARE. BY DOWNLOADING, INSTALLING OR
USING THE SOFTWARE, YOU ARE AGREEING TO BE BOUND BY THE TERMS OF THIS LICENSE. IF
YOU DO NOT AGREE TO THE TERMS OF THIS LICENSE, YOU ARE NOT AUTHORIZED TO
DOWNLOAD OR USE THIS SOFTWARE.

1. Scope. This License governs your use of any and all computer software, any printed or electronic
documentation, or other code, whether on disk, in read only memory, or on any other media (collectively, the
“Mirapoint Software”) provided to you as part of or with a Mirapoint Product.

2. License, not Sale, of Mirapoint Software. The Mirapoint Software is licensed, not sold, to you by
MIRAPOINT SOFTWARE, INC. or its affiliate, if any (“Mirapoint”). YOU MAY OWN THE MEDIA ON WHIC
MIRAPOINT SOFTWARE IS PROVIDED, BUT MIRAPOINT AND/OR MIRAPOINT’S LICENSOR(S)
RETAIN TITLE TO THE MIRAPOINT SOFTWARE. The Mirapoint Software installed on the Mirapoint
Product and any copies which this License authorizes you to make are subject to this License.

3. Permitted Uses. This License allows you to use the pre-installed Mirapoint Software exclusively on the
Mirapoint Product on which the Mirapoint Software has been installed. With respect to Mirapoint Software
[identified by Mirapoint as the “administrative application” that has not been pre-installed on the Mirapoint
Product, this License allows you to copy, use and install such Mirapoint Software on one or more administrative
workstations on which the Mirapoint Software is supported. You may make one copy of the Mirapoint
Software in machine-readable form for backup purposes only, provided that such backup copy must include all
copyright and other proprietary information and notices contained on the original.

4. Proprietary Rights; Restrictions on Use. You acknowledge and agree that the Mirapoint Software is
copyrighted and contains materials that is protected by copyright, trademark, trade secret and other laws and
international treaty provisions relating to proprietary rights. You may not remove, deface or obscure any of
Mirapoint’s or its suppliers’ proprietary rights notices on or in the Mirapoint Software or on output generated
by the Mirapoint Software. Except as permitted by applicable law and this License, you may not copy,
decompile, reverse engineer, disassemble, modify, rent, lease, loan, distribute, assign, transfer, or create
derivative works from the Mirapoint Software. Your rights under this License will terminate automatically
without notice from Mirapoint if you fail to comply with any term(s) of this License. You acknowledge and
agree that any unauthorized use, transfer, sublicensing or disclosure of the Mirapoint Software may cause
irreparable injury to Mirapoint, and under such circumstances, Mirapoint shall be entitled to equitable relief,
without posting bond or other security, including but not limited to, preliminary and permanent injunctive
relief.

5. Disclaimer of Warranty on Mirapoint Software. You expressly acknowledge and agree that use of the
Mirapoint Software is at your sole risk. Unless Mirapoint otherwise provides an express warranty with respect
to the Mirapoint Software, the Mirapoint Software is provided “AS IS” and without warranty of any kind and
Mirapoint and Mirapoint’s licensor(s) (for the purposes of provisions 5 and 6, Mirapoint and Mirapoint’s

licensor(s) shall be collectively referred to as “Mirapoint”) EXPRESSLY DISCLAIM ALL WARRANTIES AND/
OR CONDITIONS, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN ADDITION,
MIRAPOINT DOES NOT WARRANT THAT THE MIRAPOINT SOFTWARE WILL MEET YOUR
REQUIREMENTS, OR THAT THE MIRAPOINT SOFTWARE WILL RUN UNINTERRUPTED OR BE
ERROR-FREE, OR THAT DEFECTS IN THE MIRAPOINT SOFTWARE WILL BE CORRECTED. SOME
JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES OR OTHER
DISCLAIMERS, SO THE ABOVE EXCLUSION OR DISCLAIMERS MAY NOT APPLY TO YOU.

6. Limitation of Liability. UNDER NO CIRCUMSTANCES, INCLUDING NEGLIGENCE, SHALL
MIRAPOINT BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES ARISING OUT OF OR RELATING TO THIS LICENSE. FURTHER, IN NO EVENT SHALL
MIRAPOINT’S LICENSORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING BUT NOT LIMITED TO
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, LOSS OF USE, DATA OR PROFITS OR
INTERRUPTION), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY (INCLUDING
NEGLIGENCE OR OTHER TORT), ARISING IN ANY WAY OUT OF YOUR USE OF THE SOFTWARE OR
THIS AGREEMENT, EVEN IF ADVISED OF THE POSSIBILITY OF DAMAGES. SOME JURISDICTIONS
DO NOT ALLOW THE LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES SO THIS
LIMITATION MAY NOT APPLY TO YOU. In no event shall Mirapoint’s total liability to you for all damages
exceed the amount paid for this License to the Mirapoint Software.

7. Government End Users. If the Mirapoint Software is supplied to the United States Government, the
Mirapoint Software and any documentation are provided with RESTRICTED RIGHTS. The Mirapoint
Software is classified as “commercial computer software” and the documentation is classified as “commercial
computer software documentation” or “commercial items,” pursuant to DFAR Section 227.7202 or FAR
Section 12.212, as applicable. Any use, modification, reproduction, display or disclosure of the Mirapoint
Software or any documentation by the United States Government shall be governed by the terms of this License.

8. Miscellaneous. This License will be governed by and construed in accordance with the laws of the State of
California, U.S.A., without reference to its conflict of law principles. If a court of competent jurisdiction finds
any provision of this License invalid or unenforceable, that provision will be amended to achieve as nearly as
possible the same economic effect as the original provision and the remainder of this License will remain in full
force. Failure of a party to enforce any provision of this License shall not waive such provision or of the right to
enforce such provision. This License sets forth the entire agreement between the parties with respect to your use
of the Mirapoint Software and supersedes all prior or contemporaneous representations or understandings
regarding such subject matter. No modification or amendment of this License will be binding unless in writing
and signed by an authorized representative of Mirapoint. You will not export, reexport, divert, transfer or
disclose, directly or indirectly, the Mirapoint Software, Mirapoint Products or any technical information and
materials supplied under this Agreement without complying strictly with the export control laws and all legal
requirements in the relevant jurisdiction, including without limitation, obtaining the prior approval of the U.S.
Department of Commerce.

Contents
Tables...9

Preface ...11
About This XML Guide..11

About Mirapoint Documentation ...11

Getting Customer Support ..11

Typographic Conventions ...12

1
Mirapoint XML Overview ..13

Mirapoint XML APIs Overview..13

Calendar XML APIs ...13

WebMail XML APIs ...14

Address Book XML APIs ..15

HTTP Operations ...15

XML API Conventions ...15
Argument Modifiers ...16
Argument Character Encoding..16

Global XML Response Elements...17
status Response Elements..17

2
XML Interface to the WebCal Group Calendar...............................19

Date and Time Representation..19
Deleting Entries ..20
Repeating Events ..20

Calendaring Operations Summary ..21
DTD Summary ...22

Commands..23
 5

changepartstat Command .. 23
checkperms Command... 23
deletedaterange Command... 24
deleteevent Command.. 24
deletetodo Command... 25
finduser Command... 26
freebusy Command .. 26
getchanges Command .. 28
getevents Command... 29
gettodos Command.. 39
localelist Command.. 40
login Command ... 41
permissions Command... 43
prefs Command.. 47
search Command ... 52
subscriptions Command... 54
time Command .. 55
updateevent Command .. 56
updatetodo Command ... 62
vcalexport Command... 63
vcalimport Command .. 64
version Command.. 64
viewother Command.. 65

3
XML Interface to the Mirapoint Message Base............................... 67

Message Addressing ... 67
Specifying msgids ... 67
Specifying uids ... 67
Specifying msgid Ranges .. 68

Commands... 68
append Command.. 68
body Command ... 68
bodystructure Command.. 70
compose Command.. 71
expunge Command .. 73
index Command... 73
login Command ... 75
mailbox Command .. 76
mailboxlist Command.. 77
preferences Command (GET) ... 78
preferences Command (POST) ... 80
RFC822 Command.. 81
search Command ... 82
setflags Command.. 83
6

status Command...84
transfer Command..84

4
XML Interface to the WebMail Address Book87

Command Parameters...87

Commands..88
category Commands ...88
contact Commands ...90
group Commands ...93
import/export Commands...95
preferences Command ..96
search Command ..97
version Command...98

A
Mirapoint DTDs ...99

Status DTD...99

WebCal Group Calendar DTD ...99

Mirapoint Message Base DTDs...104

Address Book DTD...106
 7

8

Tables
Table 1 Typefaces Used in This Book ..12
Table 2 GET/POST Operation Convention ...15
Table 3 Example: POST Operation ...16
Table 4 XML Group Calendaring Operations...21
Table 5 DTDs Used in XML Group Calendaring ..22
Table 6 changepartstat Command Definition ..23
Table 7 checkperms Command Definition...23
Table 8 deletedaterange Command Definition...24
Table 9 deleteevent Command Definition..24
Table 10 deletetodo Command Definition...25
Table 11 finduser Command Definition ..26
Table 12 freebusy Command Definition..26
Table 13 freebusy DTD Fields ...27
Table 14 getchanges Command Definition ..28
Table 15 getevents Command Definition...30
Table 16 getevents DTD Fields..31
Table 17 gettodos Command Definition..39
Table 18 to-do Components..39
Table 19 localelist Command Definition ...41
Table 20 localelist DTD Fields ..41
Table 21 Login Command Definition..41
Table 22 permissions Command Definition (Reading) ..43
Table 23 Scope Attribute Values ...44
Table 24 permissions Command Definition (Updating)...45
Table 25 prefs Command Definition (For Reading Preferences) ..47
Table 26 prefs Command Definition (For Updating Preferences)...47
Table 27 Setting Preferences: Element Semantics, Allowed Values.......................................49
Table 28 search Command Definition ...52
Table 29 subscriptions Command Definition (Retrieve) ..54
Table 30 subscriptions Command Definition (Update)..54
Table 31 time Command Definition ..55
Table 32 updateevent Command Description..57
Table 33 updatetodo Command Definition ...62
Table 34 vcalexport Command Definition ..63
Table 35 vcalimport Command Definition ..64
Table 36 version Command Definition..64
 9

Tables
Table 37 version DTD Fields .. 65
Table 38 viewother Command Definition... 66
Table 39 append Command Definition... 68
Table 40 body Command Definition .. 68
Table 41 bodystructure Command Definition... 70
Table 42 compose Command Definition... 71
Table 43 expunge Command Definition ... 73
Table 44 index Command Definition.. 73
Table 45 login Command Definition .. 75
Table 46 mailbox Command Definition ... 76
Table 47 mailboxlist Command Definition... 77
Table 48 preferences Command (GET) Definition .. 78
Table 49 preferences Command (POST) Definition .. 80
Table 50 RFC822 Command Definition ... 81
Table 51 search Command Definition .. 82
Table 52 setflags Command Definition... 83
Table 53 status Command Definition ... 84
Table 54 transfer Command Definition .. 85
Table 55 get_categories Command Definition .. 88
Table 56 add_category Command Definition ... 89
Table 57 mod_category Command Definition .. 89
Table 58 del_categories Command Definition .. 90
Table 59 get_letter_categories Command Definition... 90
Table 60 get_contacts Command Definition ... 90
Table 61 add_contact Command Definition ... 92
Table 62 mod_contact Command Definition .. 92
Table 63 del_contacts Command Definition ... 93
Table 64 get_groups Command Definition ... 93
Table 65 add_group Command Definition ... 93
Table 66 mod_group Command Definition .. 94
Table 67 del_groups Command Definition ... 94
Table 68 export Command Definition .. 95
Table 69 import Command Definition.. 96
Table 70 prefs Command Definition... 96
Table 71 search Command Definition .. 98
Table 72 version Command Definition ... 98
10

Preface
About This XML Guide
Mirapoint’s Messaging Operating System (MOS) provides three XML interfaces for
group calendar, email access, and address book. All communicate between server
and client using XML encapsulated HTTP calls.

This book contains four chapters and an appendix:

◆ Chapter 1, Mirapoint XML Overview contains information about the different
XML interfaces documented in this manual.

◆ Chapter 2, XML Interface to the WebCal Group Calendar for calendar.

◆ Chapter 3, XML Interface to the Mirapoint Message Base for email messages.

◆ Chapter 4, XML Interface to the WebMail Address Book for address book.

◆ Appendix A, Mirapoint DTDs about document types definitions (DTDs).

About Mirapoint Documentation
Documentation for all Mirapoint products is available through the Mirapoint
Technical Library (MTL) on the Customer Support website:

http://support.mirapoint.com/secure/MTL/MTL

The MTL provides the hardware and software documentation for all supported
Mirapoint releases and appliances, and the Support Knowledge Base. The Support
site is accessible to all customers with a valid Support Contract. If your company
has this but you need a Support login ID, email support-admin@mirapoint.com.

Getting Customer Support
If you experience problems with your system, contact Customer Support by e-mail
or by telephone:

E-mail: support@mirapoint.com
Telephone: 1-877-MIRAPOINT (1-877-647-2764)

When contacting Customer Support, please be prepared with the following
information about your system: MOS version (Version command in the CLI), the
host ID (License Hostid command), serial number (Model Get Serial command),
and hardware model (Model Get Chassis command, and label on the bezel).
 11

Preface
Typographic Conventions
Table 1 explains what different fonts indicate in this book.

Table 1 Typefaces Used in This Book

Typeface Use Example

Regular Ordinary text The email server organizes
mailboxes hierarchically.

Bold Definitions A mail folder is a container that
stores messages.

Italic Emphasis and titles Specify at least two DNS servers.
See the Administrator’s Guide.

Typewriter Screen display text and
command names

Enter your IP address:

Typewriter Bold Text that you must type
exactly as shown

Dir Listdb

Typewriter Italic Variables that you
substitute and type

your_IP_address
12

1

Mirapoint XML Overview
Mirapoint provides several eXtensible Markup Language (XML) application
programming interfaces (APIs) to allow tighter, customizable integration between
Mirapoint appliances and other messaging systems, portals, or mobile devices.

These APIs can serve many functions, including calendar even synchronization,
programmatic access to message and address-book data, extended user interface
development, and more.

Mirapoint XML APIs Overview
Mirapoint provides XML APIs for:

◆ Personal and Group Calendar (including tasks)

◆ WebMail access to the message store

◆ Address Book

Calendar XML APIs
Mirapoint provides these 24 Calendar APIs, described in detail in Chapter 2, XML
Interface to the WebCal Group Calendar.

Calendar APIs:

◆ Get/set calendar access permissions (default read/default write/read/write/free
view/busy view/third-party scheduling)

◆ Find calendar users (matching a pattern)

◆ Get/set personal calendar subscriptions

◆ Check access permissions on a user’s calendar

◆ View/modify a user’s calendar

◆ Free/busy lookup on a user’s calendar

Event/ToDo APIs:

◆ Create/update event

◆ Create/update to-do item

◆ Get events (all/by ID/by date range)
13

1
Mirapoint XML Overview
◆ Get to-do items (all/by ID)

◆ Get changed events/to-do items (by date range)

◆ Delete event (cancel/delete)

◆ Delete to-do item

◆ Purge calendar (by date range)

Other APIs:

◆ Login (simple/admin login on behalf of another user)

◆ Logout

◆ Search for patterns in events/todo items

◆ Get preferences

◆ Set preferences

◆ Import calendar

◆ Export calendar

WebMail XML APIs
Mirapoint provides these 16 WebMail APIs, described in detail in Chapter 3, XML
Interface to the Mirapoint Message Base:

◆ Create a folder

◆ Delete a folder

◆ Get summary information (for a single folder or all folders)

◆ Compact a folder

◆ Get message headers (single, or by range of messages)

◆ Get content parts of a message (each part is a separate URL)

◆ Get original text message (RFC822 format)

◆ Set message flags

◆ Compose a new message

◆ Append a message to a folder

◆ Transfer a message to another folder

◆ Login

◆ Logout

◆ Search for a pattern in messages (by content values, message range, others)

◆ Get preferences

◆ Set preferences
14

 Address Book XML APIs
Address Book XML APIs
Mirapoint provides these 17 Address Book APIs, described in detail in Chapter 4,
XML Interface to the WebMail Address Book:

◆ Contacts operations (get/add/modify/delete)

◆ Groups of contacts operations (get/add/modify/delete)

◆ Get categories

◆ Search for patterns

◆ Get preferences

◆ Set preferences

◆ Import address book

◆ Export address book

◆ Others

HTTP Operations
Each XML document is retrieved through HTTP using either the HTTP 1.0 or 1.1
protocol. The information retrieved in each XML document is computed based on
the path and query components of the URL. The HTTP GET operation is used to
fetch documents, and the HTTP POST operation is used to perform actions.

With GET operations, all arguments are passed in the query component of the
URL. For POST operations, if the argument list is short, it can also be passed in the
query string. However, for longer argument lists, arguments may have to be passed
in the content of the POST operation, either in a URL-encoded way, or for
arguments that contain large values, in a MIME-encoded method.

XML API Conventions
In this manual, when specifying a particular GET or POST operation, both the
value of the path component and the query component are described as follows:

The corresponding HTTP is:

C: GET /mc/xcal/v2/getevents.xml&eventid=123&sid=27 HTTP/1.1
C: Host: host.domain.com
C: Connection: Keep-Alive

Table 2 GET/POST Operation Convention

Operation GET /mc/xcal/v2/getevents.xml

Arguments eventid ID of the event

sid user’s session ID

Result ok element

no element
 15

1
Mirapoint XML Overview
C:
S: HTTP/1.1 200 OK
S: Date: Mon, 18 Sep 2000 11:19:24 GMT
S: Content-Type: text/xml; charset=utf-8
S:
S: <?xml version="1.0"?>
S: ...

C: POST /mc/xcal/v2/login.xml HTTP/1.1
C: Host: host.domain.com
C: Connection: Keep-Alive
C: Content-Length: 85
C:
S: HTTP/1.1 100 Continue
S:
C: user=juser&password=secret99
S: HTTP/1.1 200 OK
S: ...

Argument Modifiers
In some commands there might be optional arguments, or there might be one of
two different arguments necessary, but not both. The XML modifiers for one or
more (+), zero or more (*), and zero or one (?) times are used to specify the nature
of the argument. For an argument that has an OR relationship with another
argument, (|) is used to signify that property. No modifier means exactly one
instance of the argument is necessary.

Argument Character Encoding
All input arguments are sent using utf-8 character encoding. When arguments are
sent in the query component of a URL, they must be additionally URL encoded.

Data entities that are exported by the Mirapoint server and that also might be
uploaded into the server are XML encoded in the outgoing direction. They must be
URL encoded by the client in the incoming direction if they are part of a URL. The
client is responsible for decoding the XML encoding and performing the necessary
encoding when returning the data to the server (mime multipart is recommended).
For example, an email address of the form:

John Smith <jsmith@foobar.com>

appears in the XML output as:

John Smith <jsmith@foobar.com>

which an XML parser receiving the XML document converts back to its original
form. When the client wants to give this data, it must use the first form, URL
encoded if necessary.

Table 3 Example: POST Operation

Operation POST /mc/xcal/v2/login.xml

Arguments user user login name

password user’s password
16

 Global XML Response Elements
Global XML Response Elements
This section describes the XML status element, which occurs in multiple places in
these interfaces. Other XML elements are described throughout this manual in the
context of their use.

status Response Elements
Some responses can occur in many GET or POST operations, including an OK
response when an action is performed as specified, or a NO response when an
action could not be performed. All such responses are part of a success element: ok,
no, or bad element. Responses are localized to the locale specified during login, or
the system's default locale if the locale parameter is missing.

<ok> Element
An <ok> element is included in a response to indicate that the request was
successful.

Syntax
<!ELEMENT ok (#PCDATA)>

Example
<ok>Delete Completed</ok>

The <ok> element is in GMT, for example:

<ok>20040822T001213Z</ok>

<no> Element
A <no> response to an action occurs when the server could not complete the
operation that the client requested.

Syntax
<!ELEMENT no (#PCDATA)>

Example

A <no> response is returned if an incorrect HTTP operation is sent, for example
one of:

<no>HTTP GET operation not allowed</no>
<no>HTTP POST operation not allowed</no>

The following <no> response is returned whenever an invalid or expired session ID
is passed:

<no>Your session has timed out</no>

A complete response would look as follows:

<?xml version="1.0"?>
<!DOCTYPE no SYSTEM "http://qa150.example.com/dtd/xml/v1/no.dtd">
 17

1
Mirapoint XML Overview
<no>Authentication failed</no>

<bad> Element
The <bad> element is used to indicate a badly formed or illegal request.

Syntax
<!ELEMENT bad (#PCDATA)>

Example
<bad>System I/O Error</bad>
18

2

XML Interface to the WebCal Group Calendar
This chapter defines an XML interface to Mirapoint's WebCal group calendaring
data store.

This interface provides a means of writing customized calendaring user-interface
applications, using Mirapoint for calendar stores and optionally calendar email and
mobile device reminders. For web applications, Mirapoint recommends using the
native Mirapoint interface, for reasons of performance and ease of development.

The interface can also be used by synchronization software to synchronize the
Mirapoint calendar store with other calendar applications.

The interface provides functions to:

◆ Add, delete, and modify events and to-do items

◆ Get to-do items

◆ Get events within a given date range

◆ Search for events and to-do items

◆ Import and export vCalendar

◆ Set and get user preferences

◆ Check for changes to records

◆ Subscribe to other calendars

◆ View other users' calendars

◆ Get free/busy data for users

Date and Time Representation
Times and dates are represented in the ISO-8601 short format. They are always
relative to GMT unless otherwise stated. The maximum supported time is 23:11,
31st Dec 2035 and the minimum supported time is 00:01, Jan 1 1970.

Two formats of ISO-8601 strings are used, for absolute time and relative time.
Unless otherwise stated, time fields are absolute time relative to GMT and must be
in the format:

date "T" time "Z"
19

2
XML Interface to the WebCal Group Calendar
◆ date is of the form YYYYMMDD; that is, a four- digit year value, followed by a
two-digit month value (1 through 12), followed by a two-digit day value (1
through 31, as permitted by the month).

◆ time is of the form HHMMSS; that is, a two-digit hour value followed by a
two-digit minute value, followed by a two-digit second value.

Durations of time (periods) are expressed in the form:

"P" date-comp "T" time-comp

◆ date-comp is an optional list of date components.

◆ time-comp is an optional list of time components.

Both the date and time components are a decimal number followed by a letter
indicating the units: "Y" for years, "M" for months, "D" for days, "W" for weeks,
"H" for hours, "M" for minutes, and "S" for seconds.

For example, a duration of 2 hours and 15 minutes would be represented as:

PT2H15M

A duration of 2 weeks would be represented as:

P2W

Deleting Entries
All POST operations, except for viewother.xml, either create or modify calendar
information. Once entries are set, they can be modified by setting new values. To
delete all entries already set, set the data with an empty value.

For example, to set permissions, issue the following HTTP request:

/mc/xcal/v2/permissions.xml

with the following arguments, to give joe and ed read-access to your calendar:

cal_rdaccess_type=INCLUDE&cal_rdaccess_user=joe&cal_rdaccess_type=e

To remove ed, give the following arguments:

cal_rdaccess_type=INCLUDE&cal_rdaccess_user=joe

To delete all entries, give the following arguments:

cal_rdaccess_type=INCLUDE&cal_rdaccess_user=

Repeating Events
Repeating events are stored as a single event with an option for how it repeats. This
rule is the "eventrrule" in the event structure (see “getevents Command” on
page 29). When using this rule to calculate all the instances of a repeating event, the
calculation must be performed in the timezone the event was created in.

For example, Rocky in America/Los Angeles invites Natasha in Europe/Moscow to
a meeting at 5pm every Monday starting on November 11, 2006. For Natasha this
is 4am November 12th in her local time. If she tries to calculate the next Monday in
her local time, she gets 4am November 17th, which is incorrect. If instead she
calculates in GMT and asks Rocky to do the same, they both get the same time but
20

 Calendaring Operations Summary
all instances after the first would be on Tuesdays. If Natasha decides instead of
calculating the next Monday to instead simply add 7 days (168 hours) to the start
of the first instance, she gets the incorrect time the next time a daylight savings
change occurs. However, if Natasha first converts the event time to Rocky's
timezone (GMT start time minus 8 hours), calculates the next instances, and
converts those times back to her timezone, she always gets the correct result.

A repeating event can have exceptions, which are exported through the
"exceptions" option (see “getevents Command” on page 29). This option contains
a list of dates in GMT. The instances on these dates are exceptions to the repeating
rule. Individual events can have the "exceptiondate" field which provides the parent
event uid and the date the event was originally going to occur on. This can be used
to match exceptions with their parent event.

Calendaring Operations Summary
Mirapoint’s XML Group Calendaring interface provides the following operations:

Table 4 XML Group Calendaring Operations

Description HTTP Command Result Document

1 login POST login.xml <login>

2 administrative login on behalf of
another user

POST login.xml <login>

3 logout GET login.xml <status>

4 get events within a date range GET getevents.xml <calendar>

5 get all to-do items GET gettodos.xml <calendar>

6 get IDs of events and to-do items
that have changed within a
specified time window

GET getchanges.xml <changes>

7 get events and todos based on a
search string

GET search.xml <calendar>

8 add/modify an event POST updateevent.xml <update>

9 add/modify a to-do item POST updatetodo.xml <update>

10 delete an event POST deleteevent.xml <status>

11 delete a to-do item POST deletetodo.xml <status>

12 delete events and todos within a
date range

POST deletedaterange.xml <status>

13 get user preferences GET prefs.xml <preferences>

14 set user preferences POST prefs.xml <status>

15 get calendar access permissions GET permissions.xml <permissions>

16 set calendar access permissions POST permissions.xml <status>
 21

2
XML Interface to the WebCal Group Calendar
DTD Summary
Different types of DTDs are used for different operations, which lets clients leverage
XML parsing to verify that replies contain the correct type of information for the
request that generated them.

Each DTD is described where it is first used in this chapter.

17 get calendar subscriptions GET subscriptions.xml <userlist>

18 set calendar subscriptions POST subscriptions.xml <status>

19 view another user's calendar POST viewother.xml <viewother>

20 find calendar user using LDAP GET finduser.xml <userlist>

21 check calendar access
permissions to see if a user is
allowed to perform a specified
operation

GET checkperms.xml <status>

22 perform free/busy lookups on a
user's calendar

GET freebusy.xml <free-busyreply>

23 import in vCalendar format POST vcalimport.xml <status>

24 export in vCalendar format GET vcalexport.xml text/x-
vCalendar
MIME type

25 accept or decline a calendar event POST changepartstat.xml <status>

Table 5 DTDs Used in XML Group Calendaring

DTD Usage

calendar In replies to calendar queries for events and to-do items.

changes To retrieve list of events and to-dos which were changed or deleted.

freebusyreply In replies requesting free-busy information.

login In reply to login requests.

permissions In replies requesting user permissions.

preferences In replies requesting user preferences. Other preferences are
returned in permissions and subscriptions.

status For operations that just succeed or fail.

update For replies to update requests on events and to-do items.

userlist In replies requesting lists of users.

viewother In replies to request viewing another calendar.

Table 4 XML Group Calendaring Operations

Description HTTP Command Result Document
22

 Commands
Commands
This section describes the commands available in the Group Calendar XML
interface.

changepartstat Command
The changepartstat command is used by clients to accept or decline a calendar
event.

The request is sent via an HTTP POST message.

changepartstat Example
The response is a status response. See “status Response Elements” on page 17.

checkperms Command
The checkperms command lets a client test if a user is allowed to perform a
particular operation on another user's calendar. An HTTP GET requests the
information for a particular user and operation and a status doctype returns the
result.

Table 6 changepartstat Command Definition

Operation POST /mc/xcal/v2/changepartstat.vcs

Arguments sid session ID

eventid ID of the event

stat This field can take the values accept or decline.

sendmail Specifies if email should be sent to notify attendees.
Valid values are y and n.

instance? Specifies if one or all instances of a repeating event
should be updated. Valid values are all and one. For
non-repeating events, use the value one or do not
specify this field.

Result <status> document

Table 7 checkperms Command Definition

Operation GET /mc/xcal/v2/checkperms.xml

Arguments sid session ID

user The login ID of the user on whose calendar the
requester wishes to perform the operation.

scope The type of operation to be performed. The values of
scope allowed are the same as defined in section 4.3.

Result <status> doctype. <ok> means the operation is allowed, <no> means
it is not, and <bad> means some input error.
 23

2
XML Interface to the WebCal Group Calendar
checkperms Example
The response is a status response. See “status Response Elements” on page 17.

deletedaterange Command
The deletedaterange command deletes all events within a date range.

Both lowerbound and upperbound can be "*", which implies no bound. Therefore,
setting both lowerbound and upperbound to "*" deletes the entire calendar.

deletedaterange Example
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE status SYSTEM "http://mail.example.com/dtd/xcal/v2/status.dtd”>
<status>
<ok>OK</ok>
</status>

deleteevent Command
The deleteevent command deletes an existing event from the calendar store.

Table 8 deletedaterange Command Definition

Operation POST /mc/xcal/v2/deletedaterange.xml

Arguments sid session ID

lowerbound start of window in ISO-8601.

upperbound end of window in ISO-8601.

x-mira-agent? (optional) A text string that identifies the client
software. This string is not stored with the
event record, but may be used for logging.
Maximum length is 63 characters.

Result <status> doctype

Table 9 deleteevent Command Definition

Operation POST /mc/xcal/v2/deleteevent.xml
24

 Commands
deleteevent Example
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE status SYSTEM "http://mail.example.com/dtd/xcal/v2/status.dtd”>
<status>
<ok>
20040821T005101Z</ok>
</status>

deletetodo Command
The deletetodo command deletes an existing to-do item from the calendar store.

Arguments sid session ID

eventid event ID

hard? If present and equal to "y", any events that
would otherwise be moved into the "canceled"
state (for group events) are deleted.

instance? This field applies only to repeating events. It is
ignored for non-repeating events. It can have
the value all or one.

sendmail? This field specifies if the cancel email messages
should be sent to internal attendees. It can
have values "y" or "n" (defaults to "y").

extsendmail? This field specifies if the cancel email messages
should be sent to external attendees. It can
have values "y" or "n" (defaults to "y").

x-mira-agent? (optional) A text string that identifies the client
software. This string is not stored with the
event record, but may be used for logging.
Maximum length is 63 characters.

Result <status> doctype

Table 10 deletetodo Command Definition

Operation POST /mc/xcal/v2/deletetodo.xml

Arguments sid session ID

todoid todo ID

x-mira-agent? (optional) A text string that identifies the client
software. This string is not stored with the
event record, but can be used for logging.
Maximum length is 63 characters.

Result <status> doctype

Table 9 deleteevent Command Definition
 25

2
XML Interface to the WebCal Group Calendar
deletetodo Example
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE status SYSTEM "http://mail.example.com/dtd/xcal/v2/status.dtd”>
<status>
<ok>OK</ok>
</status>

finduser Command
The finduser command lets client user software use the same user-search
functionality that is available in the native Mirapoint web interface. The client
provides a search string and the server performs a local search and if necessary and
configured, an LDAP search for matching users.

Results are returned in a userlist doctype (see “subscriptions Command” on
page 54). The maximum number of users returned is capped at 100 entries.

finduser Example
The response is similar to the “subscriptions Example” on page 55.

freebusy Command
The freebusy command is used to request free busy information for a user's
calendar.

Table 11 finduser Command Definition

Operation GET /mc/xcal/v2/finduser.xml

Arguments sid session ID

pattern The search string. It must contain between 1 and 255
characters.

fqdn "yes" to fully qualify all userIDs in the top level in the
users returned, "no defaults to "no".

urlinstance The URL instance to use for lookups (see the admin
URL command); the used in case urlinstance parameter
is not specified. The string can be 1 through 255
characters. urlinstance can be any filter listed by the
Url List command and is represented by the
class:instance name as defined in Help About Url; for
example, urlinstance=groupcalendar:userlookup.

Result <userlist> doctype containing a list of any matching users, together with
the login ID when further referencing the users.

Table 12 freebusy Command Definition

Operation GET /mc/xcal/v2/freebusy.xml
26

 Commands
freebusy Example
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE freebusyreply SYSTEM "http://mail.example.com/dtd/xcal/v2/

freebusy.dtd”>
<freebusyreply>

<ok>OK</ok>
<vfreebusy>
. <dtstamp>20020620T130120Z</dtstamp>
. <dtstart>20000101T000000Z</dtstart>
. <dtend>20101231T235900Z</dtend>
. <freebusy>20020325T090000Z/20020325T100000Z</freebusy>
</vfreebusy>
<vfreebusy>
. <dtstamp>20020620T130120Z</dtstamp>
. <dtstart>20000101T000000Z</dtstart>
. <dtend>20101231T235900Z</dtend>
. <freebusy>20020416T090000Z/20020416T100000Z</freebusy>
</vfreebusy>
<vfreebusy>

Arguments sid session ID

user Login ID of the user whose free-busy information is
being requested.

dtstart Start of the lookup window, in ISO-8601, GMT.

dtend Stop of the lookup window, in ISO-8601, GMT.

Result freebusyreply doctype containing a list of <freebusy> elements for
that user.

Table 13 freebusy DTD Fields

Name Type
Max

Length
(Chars)

Default Occurences Description

dtstamp required 255 N/A 1 The time that the element was created
(that is, shortly after the lookup request
was sent), in GMT.

dtstart required 255 reques
ted
value

1 The time of the start of the free-busy
window (that is, the value of dtstart
provided by the client software when it
sent the request), in GMT.

dtend required 255 reques
ted
value

1 The time of the end of the free-busy
window (that is, the value of dtend
provided by the client software when it
sent the request), in GMT.

freebusy required 255 N/A 0, 1, or
more

A string representing a busy period. The
string is two ISO-8601 times separated by
a slash ('/') character, with no spaces. The
first time is the start of a busy period, the
second is the end of that busy period.

Table 12 freebusy Command Definition
 27

2
XML Interface to the WebCal Group Calendar
. <dtstamp>20020620T130120Z</dtstamp>

. <dtstart>20000101T000000Z</dtstart>

. <dtend>20101231T235900Z</dtend>

. <freebusy>20020417T090000Z/20020417T100000Z</freebusy>
</vfreebusy>
<vfreebusy>
. <dtstamp>20020620T130120Z</dtstamp>
. <dtstart>20000101T000000Z</dtstart>
. <dtend>20101231T235900Z</dtend>
. <freebusy>20020501T090000Z/20020501T100000Z</freebusy>
</vfreebusy>

</freebusyreply>

getchanges Command
The getchanges command returns a list of events and to-do items that have changed
within a given time window. Fewer elements, such as the <created>, <dtstamp>,
<last-modified> and <sequence> elements, are included in the <event> and <todo>
elements returned.

Calendar record changes, are described using the <changes> doctype.

getchanges Example
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE changes SYSTEM "http://mail.example.com/dtd/xcal/v2/changes.dtd”>
<changes>

<ok>OK</ok>
<changedevent>
. <eventid>e102822000</eventid>

Table 14 getchanges Command Definition

Operations GET /mc/xcal/v2/getchanges.xml

Arguments sid session ID

lowerbound start of window in ISO-8601 format

upperbound end of window in ISO-8601 format

fqdn "yes" to fully qualify all userIDs in the top
level in the events returned, "no" to not.
This command defaults to "no".

includeprivate "yes" to include private events in the
results when viewing another user's
calendar. By default, private events are not
included in the result if the calendar for
the session is not the same as the user that
created the session (that is, the sessionid
was obtained from a viewother.xml
request).

type (optional): "*", "event" or "todo" to
return all changed items, events or todos
respectively. Default type is both ("*")

Result A <changes> element containing 0 or more <changedevent> and
<changedtodo> elements.
28

 Commands
. <created>20020620T103400Z</created>

. <dtstamp>20020620T124740Z</dtstamp>

. <last-modified>20020620T112000Z</last-modified>

. <sequence>17</sequence>
</changedevent>
<changedevent>
. <eventid>e102822001</eventid>
. <created>20020620T103400Z</created>
. <dtstamp>20020620T124740Z</dtstamp>
. <last-modified>20020620T110500Z</last-modified>
. <sequence>12</sequence>
</changedevent>
<changedevent>
. <eventid>e102a58400</eventid>
. <created>20020620T101200Z</created>
. <dtstamp>20020620T124740Z</dtstamp>
. <last-modified>20020620T102900Z</last-modified>
. <sequence>7</sequence>
. <x-mira-deleted/>
</changedevent>
<changedtodo>
. <todoid>t104901e00</todoid>
. <created>20020620T121400Z</created>
. <dtstamp>20020620T124740Z</dtstamp>
. <last-modified>20020620T121400Z</last-modified>
. <sequence>2</sequence>
</changedtodo>

</changes>

getevents Command
The getevents command returns a list of events, or instances of repeating events,
that fall within a specified date range, or that match the eventid. lowerbound and
upperbound can both be set to "*", which implies no bound to that end of the
range. The request must contain either a specified lowerbound and upperbound
variables, eventid, or both. The server returns a calendar element containing a list
of all the events found (see the getevents DTD in Appendix A, Mirapoint DTDs).

If eventid is not specified, all events within lowerbound and upperbound are
returned. Repeating event instances (including exceptions) are always specified as
<parenteventid>-<instancetime>.

The eventid accepts IDs from third party calendar agents in the following forms:

clientid:<clientid-spec>
clientid:<clientid-spec>-<exceptiondate>

The first form references non-repeating events or whole series of repeating events.
The second form references instances (and exceptions) of repeating events, where
<clientid-spec> is the client ID of the repeating series parent. (Outlook uses the
same client ID for parent and exceptions of repeating series). The <exceptiondate>
is an ISO-8601 string that references an instance of event, as for regular Mirapoint
eventid. The <clientid-spec> may be of two forms:

<clientid>
<clientid>:<apptid>

The <apptid> is stored in event objects and returned in the <clientid> element of
replies to getevents.xml requests. It is ignored for event indexing though. That is,
the clientid key used to index events is the string preceeding the colon (:) only.
 29

2
XML Interface to the WebCal Group Calendar
When a client creates an exception to a repeating series, it may use the clientid
form with an exception to specify the clientid referenced. If it uses the clientid
form of eventid, the same request must not contain a clientid argument.

Calendar events, or instances of repeating events are described in responses using
the `event' element in a <calendar> document.

The elements of event elements are described below. There are three types of
elements:

◆ Required elements are always present in the <event> or <todo> element.

◆ Optional elements appear only if they have had a value assigned to them.

◆ Flag elements indicate state by their presence or absence. That is, if they are
present, their value is TRUE, and otherwise false. They cannot have an
"undefined" value.

Table 16 on page 31 describes the fields. It includes maximum field lengths, where
applicable, and default values. Defaults are the values that the Mirapoint calendar
store assigns to an event or to-do item if the client specifies no value for that field.

◆ A default value of "n/a" means that either there is no concept of default,
because the event/to-do item cannot be created without specifying a value, or
that the value has no fixed default, but is always created by the system as a
function of some algorithm.

◆ A default value of "undefined" means that the field is optional. If no value has
been assigned to it, it remains in an "undefined" state and is not exported.

The "Occurrences" field indicates how many times the element might appear in an
<event> or <todo> element.

Table 15 getevents Command Definition

Operation GET /mc/xcal/v2/getevents.xml

Arguments sid session ID

lowerbound start of window in ISO-8601

upperbound end of window in ISO-8601

expand expand repeating events. Valid values are y and n.
Default is n.

eventid? event ID of an event.

fqdn "yes" to fully qualify all userIDs in the top level in
the events returned, "no" to not. This command
defaults to "no".

includeprivate "yes" to include private events in the results when
viewing another user's calendar. By default,
private events are not included in the result if the
calendar for the session is not the same as the user
that created the session (that is, the sessionid was
obtained from a viewother.xml request).

Result A <calendar> element containing 0 or more <event> elements.
30

 Commands
All fields are XML encoded. For example, an event title of "Hi <there>" is exported
as "Hi <there>".

Table 16 getevents DTD Fields

Name Type
Max

Length
(Chars)

Default Occur-
rences Description

eventid required 255 n/a 1 XML-encoded ID of the
event. The event ID,
assigned by the Mirapoint
calendar store, is an ASCII
string that uniquely
identifies the event within a
user's calendar.

clientid optional 1024 n/a 1 Client ID of an event, if it
exists.

globalid required 1024 n/a 1 Globalid (server) ID of an
event.

eventtitle required 255 n/a 1 Title of the event. Cannot be
an empty string.

eventdesc optional 65531 n/a 0 or 1 Description of the event.

eventstart required 255 n/a 1 Start time/date of the event,
in ISO-8601 format (see
“getevents Example” on
page 38). For repeating
events, the start time/date of
the event’s first instance.

eventstop required 255 n/a 1 Stop time of the event, in
ISO-8601 format (see
“getevents Example” on
page 38). For repeating
events, the stop time/date of
the event’s first instance.

viewablestart required 255 n/a 1 Date/time when an instance
of the event first becomes
"viewable" in a time
window. For example, if an
event starts at 14:00, but the
lowerbound parameter
passed to the getevents
command starts at 15:00,
the viewable start is 15:00. If
a repeating event has more
than one instance in the
window, this value is the
viewable start of the first
instance that has some part
of it within the window.
 31

2
XML Interface to the WebCal Group Calendar
viewablestop required 255 n/a 1 Latest date/time within the
specified time window that
the first instance of the event
is still viewable within the
window. If an event starts at
12:00, ends at 16:00, but the
upperbound passed to the
getevents command is
13:00, the viewable stop is
13:00. If a repeating event
has more than one instance
in the window, this value is
the viewable stop time of the
first instance that has some
part of it within the window.

allday flag n/a FALSE 0 or 1 Present if the event is an
"all-day" event
("transparent event"); one
that has only a date
associated with it. It does
not appear as "busy" in free-
busy requests. If a time
window is provided that
overlaps with another day, a
new time is substituted
starting at 7:00 AM in that
timezone.

eventpriority required 1 3 1 Event priority. Valid values:
1 through 5, with 1 being
the highest.

eventemaildiff required 4 obtained
from the
calendar
defaults
(see “prefs
Command”
on page 47)

1 Minutes before the event
occurs to send an email
reminder. Valid values: -1
(no email reminder) through
70555 minutes, in five
minute increments: 5, 10,
15, ..., 70555.

eventpagerdiff required 4 default is
obtained
from the
calendar
defaults
(see “prefs
Command”
on page 47)

1 Minutes before the event
occurs to send a pager email
reminder. Valid values: -1
(no pager email reminder)
through 70555 minutes, in
five minute increments: 5,
10, 15, ..., 70555.

Table 16 getevents DTD Fields

Name Type
Max

Length
(Chars)

Default Occur-
rences Description
32

 Commands
eventnotifylist optional n/a undefined 0 or 1 Email addresses to which to
send notification emails
when the event is created or
modified.

eventnotifyelement optional total
length of
all email
addresses
cannot
exceed
65531
bytes.

undefined 0, 1,
or
more

One email address used in
eventnotifylist.

eventrrule optional 512 undefined 0 or 1 A vCalendar 1.0 RRULE
specification of a repeating
event. Unless otherwise
specified, events do not
repeat.

eventxdata optional 65531 undefined 0 or 1 General-purpose string that
lets client software store its
own data in an event item.
The Mirapoint calendar
store does not alter this
field’s contents.

attendees optional n/a n/a n/a Attendees to a meeting.

attendee optional 255 undefined 0, 1,
or
more

Meeting attendee. Must be
references as an RFC-822
compliant form of the email
address on the attendee’s
Mirapoint mail store. The
role attribute of the
attendee must be "CHAIR"
or "REQ-PARTICIPANT".
The partstat attribute of
the attendee may be
"NEEDS-ACTION",
"ACCEPTED",
"DECLINED", or
“TENTATIVE” status. The
TST attribute represents
Outlook’s TrackStatusTime
property, used by event
owners to guarantee that
accept/decline emails are not
read out of order.

Table 16 getevents DTD Fields

Name Type
Max

Length
(Chars)

Default Occur-
rences Description
 33

2
XML Interface to the WebCal Group Calendar
extattendees optional n/a n/a n/a External attendees to a
meeting.

extattendee optional 255 undefined 0, 1,
or
more

External attendee to a
meeting. Must be references
as an RFC-822 compliant
form of the email address.
The partstat attribute of
the attendee may be
"NEEDS-ACTION",
"ACCEPTED",
"DECLINED", or
“TENTATIVE”.

resources optional n/a n/a n/a Resources (such as
conference rooms) assigned
to a meeting.

resource optional 255 undefined 0, 1,
or
more

Resource required for a
meeting (for example,
projector, meeting room).
Must be references as an
RFC-2822 (a revised RFC-
822) compliant form of the
email address on the
Mirapoint mail store of that
resource user. (Resource
calendars are created as
regular users in the
Mirapoint calendar server).
The partstat attribute of
the attendee may be
"NEEDS-ACTION",
"ACCEPTED",
"DECLINED", or
“TENTATIVE”.

categories optional n/a n/a n/a Categories (such as personal,
business, ...) assigned to a
meeting.

category optional 255 undefined 0, 1,
or
more

Category associated with a
meeting.

Table 16 getevents DTD Fields

Name Type
Max

Length
(Chars)

Default Occur-
rences Description
34

 Commands
created required 255 time the
record was
created
required

1 Time the event/to-do record
was created, in GMT, either
imported via the XML
interface, or the admind
vCalendar interface. If
undefined, defaults to the
time when the record was
created in the Mirapoint
calendar store.

dtstamp required 255 n/a 1 Time the element was
created (that is, shortly after
the lookup request was
sent), in GMT.

last-modified required 255 time the
record was
last
modified

1 Time the event/to-do record
was last modified, in GMT.
Importing the event via the
XML interface or the
admind vCalendar interface
always counts as a
modification.

sequence required 255 0 or
previous
value plus 1

1 Sequence number associated
with the last change in the
Mirapoint calendar store.
If not specified when
importing and the record
already exists in the calendar
store, the new sequence
number is that of the
existing record plus 1.
If not specified when
importing and the event does
not already exist in the
calendar store, it defaults to
zero. This value can increase
by more than 1 depending
on how many internal
operations are required to
fulfill a specific request.

Table 16 getevents DTD Fields

Name Type
Max

Length
(Chars)

Default Occur-
rences Description
 35

2
XML Interface to the WebCal Group Calendar
status required 255 undefined 0 or 1 Case-insensitive text string
indicating the status of the
meeting. The status element
is present only when the
event or to-do item is
canceled, in which case it
adopts a value of
"CANCELLED". Defaults
to an undefined value, which
implies that the event is not
canceled.

x-mira-sendmail flag n/a TRUE 0 or 1 If present, the event is in a
state where if it is changed,
the Mirapoint calendar
server sends change
notification emails to all
participants. If not present,
emails are not sent.

x-mira-deleted flag n/a FALSE 0 or 1 If present, the event was
deleted from the calendar
store. When present, only
the eventid, created,
dtstamp, last-modified,
and sequence elements are
present.

x-mira-readonly flag n/a FALSE 0 or 1 If present, the event cannot
be changed. Occurs when
viewing another user's
calendar or when viewing an
event that comes from
another calendar to which
the user is subscribed.

attach optional n/a undefined 0 or 1 An attachment to the event.
Multiple attachments are
allowed. The attach element
contains only an extref
element, which references
the attachment as an entity
defined in the internal DTD.

extref optional n/a undefined 0, 1,
or
more

Appears only in an attach
element. It has an "uri"
attribute that references an
XML entity that points to
the attachment.

Table 16 getevents DTD Fields

Name Type
Max

Length
(Chars)

Default Occur-
rences Description
36

 Commands
exceptions optional n/a n/a n/a Exceptions to a repeating
event.

exception optional 255 undefined 0, 1,
or
more

Time/date of an exception
for this repeating event.
Must be in ISO-8601 format
(see “getevents Example” on
page 38).

timezoneoffset optional 255 0 0 or 1 Offset from GMT of the
timezone in which the event
was created. Represented as
a relative time (see “Date
and Time Representation”
on page 19) with a minus
sign prepended for offsets
before GMT (for
example,Los Angeles "-
PT8H00M").

timezone optional 255 Etc/GMT 0 or 1 Timezone the event was
created in (for a list of
current time zones, use the
CLI Ntp Get Knownzones
command.)

sequence-init flag 255 n/a 0 or 1 If a prior updateevent.xml
request specified a
sequenceinit property, then it
is returned here. The server
does not modify this. If a
sequenceinit was never
specified for an event, then
this element is not returned.

client-lastmodified flag 255 n/a 0 or 1 If a prior updateevent.xml
request specified a
clientlastmodified property,
then it is returned here. The
server does not modify this.
If a clientlastmodified was
never specified, then this
element is not returned. For
Schedulemode Email (NFO)
the server may modify this to
preserve schedule semantics.

Table 16 getevents DTD Fields

Name Type
Max

Length
(Chars)

Default Occur-
rences Description
 37

2
XML Interface to the WebCal Group Calendar
getevents Example
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE calendar SYSTEM "http://mail.example.com/dtd/xcal/v2/calendar.dtd”>
<calendar>
<ok>OK</ok>
<event>
<eventid>e102822001</eventid>
<eventtitle>an event with 3 attendees</eventtitle>
<eventdesc>a full different event description</eventdesc>
<eventstart>20020319T000000Z</eventstart>
<eventstop>20020319T010000Z</eventstop>
<viewablestart>20020319T000000Z</viewablestart>
<viewablestop>20020319T010000Z</viewablestop>
<eventpriority>4</eventpriority>
<eventemaildiff>10</eventemaildiff>
<eventpagerdiff>10</eventpagerdiff>
<eventxdata>a full different eventxdata</eventxdata>
<created>20020620T103400Z</created>
<dtstamp>20020620T120512Z</dtstamp>
<last-modified>20020620T110500Z</last-modified>
<sequence>12</sequence>
<attendees>
<attendee role="CHAIR" partstat="ACCEPTED">t0</attendee>
<attendee role="REQ-PARTICIPANT" partstat="DECLINED">t1</attendee>
<attendee role="REQ-PARTICIPANT" partstat="ACCEPTED">t2</attendee>
<attendee role="REQ-PARTICIPANT" partstat="NEEDS-ACTION">t3</attendee>
<attendee role="CHAIR" partstat="ACCEPTED">User 0 on qa33 <u0_qa33></

attendee>
</attendees>
<extattendees>
<extattendee partstat="NEEDS-ACTION">g@m.com</extattendee>
<extattendee partstat="NEEDS-ACTION">u0</extattendee>
</extattendees>
<resources>
<resource partstat="ACCEPTED">diablo</resource>
<resource partstat="ACCEPTED">projector</resource>
</resources>

replytime flag 255 n/a 0 or 1 Outlook ReplyTime
property, updateed when a
user accepts or declines an
invitation. The server stores
this property and returns it
in <event> tags, but does not
use it for anything.

master-clientid flag 255 n/a 0 or 1 This is the master clientid as
specified by the
masterclientid attribute in
updateevent.xml requests. If
no value was specified by
updateevent for an event,
this element is not returned.

Table 16 getevents DTD Fields

Name Type
Max

Length
(Chars)

Default Occur-
rences Description
38

 Commands
<perms scope="EVENT_RDACCESS" type="INCLUDE">
<permuser>u0_polarbear</permuser>
<permuser>u0_bustle</permuser>
</perms>
<perms scope="EVENT_WRACCESS" type="INCLUDE">
<permuser>u0_polarbear</permuser>
<permuser>u1_bustle</permuser>
</perms>
</event>
<event>
...
</event>
</calendar>

gettodos Command
The gettodos command returns a complete list of to-do items in a user's calendar or
a single to-do item requested by todoid. All to-do items returned are sorted in
priority order, highest priority first. If the todoid field is missing or empty, all to-
dos are returned, otherwise just the corresponding to-do item for that todoid is
returned.

Elements common to events and to-dos are only listed in the table of elements for
the event.

Table 17 gettodos Command Definition

Operation GET /mc/xcal/v2/gettodos.xml

Arguments sid session ID

todoid? todo ID

Result Result A <calendar> element containing 0 or more <todo> elements,
sorted in priority order (highest priority first).

Table 18 to-do Components

Name Type
Max

Length
(Chars)

Default Occur-
rences Description

todoid required 255 n/a 1 The XML-encoded ID of the to-do
item. todoid is assigned by the
Mirapoint calendar store and is an
ASCII string that uniquely identifies the
to-do within a user's calendar.

todotitle required 255 n/a 1 The title of the to-do item. Cannot be
an empty string.

tododesc optional 65531 n/a 0 or 1 The description of the to-do record.

todopriority required 1 3 1 The to-do priority. Valid values are 1
through 5, with 1 being the highest.
 39

2
XML Interface to the WebCal Group Calendar
gettodos Example
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE calendar SYSTEM "http://mail.example.com/dtd/xcal/v2/calendar.dtd”>
<calendar>
<ok>OK</ok>
<todo>
<todoid>t104901e00</todoid>
<todotitle>Need to buy a mirapoint server</todotitle>
<tododesc>The stuff we talked about yesterday.</tododesc>
<todopriority>1</todopriority>
<created>20020620T121400Z</created>
<dtstamp>20020620T121449Z</dtstamp>
<last-modified>20020620T121400Z</last-modified>
<sequence>2</sequence>
<due>20020629T060000Z</due>
<completed>20020630T060000Z</completed>
</todo>
<todo>
...
</todo>
</calendar>

All ISO-8601 time fields are expressed relative to UTC.

localelist Command
Localelist command displays all available calendar (mcal) locales on the system. No
parameters are needed.

todoxdata optional 65531 undefined 0 or 1 A general-purpose string that lets client
software store its own data in a to-do
record. Mirapoint calendar store does
not alter this field’s contents.

created required n/a n/a 1 ISO-8601 date and time when the task
was created by the server.

dtstamp required n/a n/a 1 ISO-8601 date and time when the task
was given to the client.

last-modified required n/a n/a 1 ISO-8601 date and time when the task
was last modified.

sequence required n/a n/a 1 The number of times that this task was
modified.

due optional n/a undefined 0 or 1 The time/date when the to-do is due, in
ISO-8601 format.

completed optional n/a undefined 0 or 1 The time/date when the to-do was
completed, in ISO-8601 format.

Table 18 to-do Components

Name Type
Max

Length
(Chars)

Default Occur-
rences Description
40

 Commands
Call localelist prior to login, pick the locale of the user’s choice and login including
the locale name as a parameter.

localelist Example
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE localelist SYSTEM "http://mail.example.com/dtd/xcal/v2/

localelist.dtd”>
<localelist>

<locale>
. <default>
. <name>en_US.ISO_8859-1</name>
. <language>English</language>
</locale>
<locale>
. <name>de_DE.utf-8L3_1_0</name>
. <language>Deutsch</language>
</locale>
<locale>
. <name>it_IT.utf-8L3_1_0</name>
. <language>Italiano</language>
</locale>

</localelist>

login Command
The login action performs a login or logout operation for a user. A POST operation
requests login, creating a session if authentication succeeds. A GET operation
terminates a session, logging a user out.

Table 19 localelist Command Definition

Operation GET /mc/xcal/v2/localelist.xml

Result <localelist> document

Table 20 localelist DTD Fields

Name Type
Max

Length
(Chars)

Default Occur-
rences Description

default optional N/A N/A 0, or 1 Indicates that the locale containing this element
is the default locale on the system.

name required 1024 N/A 1 Identifies a unique, internal name for the locale.
This string should be used in the locale
parameter during login.

language required 1024 N/A 1 Identifies a human readable form for the locale
name. The string appears localized in its own
locale.

Table 21 Login Command Definition

Operation POST /mc/xcal/v2/login.xml
 41

2
XML Interface to the WebCal Group Calendar
In some cases, a client needs to manipulate a calendar without access to the user's
password. One example is automatic synchronization of calendar data in the
Mirapoint calendar store with other devices. For this reason, the login command
lets users with administrator privileges only log in as themselves, and read and write
another user's calendar. For example, client software needs to update user Joe with
new events it detected in another of Joe's devices. The client logs into the XML
interface with user set to the administrator's user name (for example,
"administrator"), password set to the administrator's password and caluser set to
"joe". The administrator then has a session open to perform any operation on Joe's
calendar that Joe himself could perform.

On the login reply, the server's current time (in ISO-8601 format) is included to let
synchronization clients provide useful input to the getchanges.xml command.

If the user's calendar has been the subject of a server-side repair operation, the
dumpcal field is provided in successful login replies and contains the last repair time
in ISO-8601 format.

If the login request is successful, the response of login.xml consists of all the email
addresses of the logged-in user. These email addresses include the primary mail
(mail attribute in LDAP) and either mailAlternateAddresses or mailLocalAddresses
(whichever is present in the LDAP schema).

All the mail addresses are enclosed in the <emaillist> </emaillist> tag. The primary
email address is differentiated from the other email addresses using the attribute
type="primary".

Replies to login requests are made using the login DTD, which either contains some
failure code, or a success code together with a session ID (contained in an <sid>
element). This session ID must be used in all further requests in that session.

login Example
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE login SYSTEM "http://when/mc/xcal/v2/login.dtd">
<login>

<ok>20060807T214504Z</ok>
<sid>40ccdb885c219fca986b1a5ff04685534</sid>
<time>20060807T214504Z</time>

Arguments user User's login name

password User's password

locale Session locale. If parameter is not specified, use system's
default locale.

caluser Username of the calendar that is to be manipulated; should
be used for administration only (see below).

sid Session ID (for logout only)

Result <login> doctype (for logins)

<status> doctype (for logouts)

Table 21 Login Command Definition
42

 Commands
<emaillist>
. <email type="primary">komal.kaks@dummy.com</email>
. <email>komalkaks@dummy.com</email>
. <email>kkaks@dummy.com </email>
</emaillist>

</login>

HTTP Redirection on Login
If a login action is sent to a host on a multiple server farm, an HTTP redirection can
result via a 302 (Moved Temporarily) HTTP result.

Example
C: POST /mc/xcal/v2/login.xml?user=joe&password=cool HTTP/1.1
C: Host: host0
C: Content-Length: 0
C:
S: HTTP/1.1 302 Moved Temporarily
S: Content-Length: 0
S: Location: http://host1/v2/login.xml?sid=23432
S:

permissions Command
The permissions command is used to get or set the various permissions variables for
a calendar (described in section 4.3). An HTTP GET gets a <permissions> doctype
with a list of the calendar permissions and a POST can be used to update the
permissions.

For reading the permissions variables for a calendar:

Permission elements are used to describe which users are allowed to perform which
operations.

The <permissions> element contains a list of <perms> elements, each of which
defines which users are allowed to perform a certain operation. The scope attribute

Table 22 permissions Command Definition (Reading)

Operation GET /mc/xcal/v2/permissions.xml

Arguments sid session ID

fqdn "yes" to fully qualify all userIDs in the top level in the
events returned, "no" to not. This parameter defaults to
"no".

Result <permissions> doctype # for preferences requests
 43

2
XML Interface to the WebCal Group Calendar
determines which operation the <perms> element refers to and can take the
following values:

EVENT_RDACCESS and EVENT_WRACCESS are not allowed in GET or POST
permissions.xml operations.

The type attribute determines what type of access control is being used for the
<perms> element and can take two values:

◆ INCLUDE -- only users listed in the <perms> element and the owner of the
calendar or event, are allowed to perform the operation.

◆ PUBLIC -- any user can perform that operation.

The <permuser> elements are used to list the users allowed to perform the
operation and must contain the login ID of a valid user in the Mirapoint cluster.

Table 23 Scope Attribute Values

value operation

CAL_RDACCESS Top-level read access to a calendar. If a user does not have such
read access to a calendar, they can not read any information
from that calendar.

CAL_WRACCESS Top-level write access to a calendar. If a user does not have such
write access to a calendar, they cannot write any information to
that calendar, except for scheduling events in that calendar (see
SCHD_WRACCESS).

DFLT_RDACCESS When an event is created, the default read access to the event is
initialized to be the same as this permissions field (see
EVENT_RDACCESS). (*)

DFLT_WRACCESS When an event is created, the default write access to the event is
initialized to be the same as this permissions field (see
EVENT_WRACCESS). (*)

FRBS_RDACCESS Free-busy lookup access to a calendar. If a user does not have
such access to a calendar, they cannot request free-busy
information.

SCHD_WRACCESS Scheduling write access to a calendar. For a user to be able to
request a meeting with another user, the first user must have
such access to that calendar, otherwise a tentative meeting
cannot be scheduled in that user's calendar.

EVENT_RDACCESS Read-access to a particular event. Defaults to the value of
DFLT_RDACCESS at the time the event is created.

EVENT_WRACCESS Write-access to a particular event. Defaults to the value of
DFLT_WRACCESS at the time the event is created.

(*) The current WebCal GUI does not support thie flag.
44

 Commands
For updating the permissions variables for a calendar:

Table 24 permissions Command Definition (Updating)

Operation POST /mc/xcal/v2/permissions.xml

Arguments sid session ID

cal_rdaccess_type? The type of access control to use for read
access permissions to the calendar, one of:
"PUBLIC" -- anyone can read the calendar.
There must be no cal_rdaccess_user inputs.
"INCLUDE" -- only users specified by the
cal_rdaccess_user inputs can read the
calendar. If there are no cal_rdaccess_user
inputs, only the calendar owner an read it.

cal_rdaccess_user* Specifies a user who is allowed to read the
calendar, if the type is "INCLUDE". This field
cannot be used if cal_rdaccess_type is
"PUBLIC".

cal_wraccess_type? The type of access control to use for write
access permissions to the calendar, one of:
"PUBLIC" -- anyone can modify the calendar.
There must be no cal_wraccess_user inputs.
"INCLUDE" -- only users specified by the
cal_wraccess_user inputs can modify the
calendar). If there are no cal_wraccess_user
inputs, only the owner of the calendar can
modify it.

cal_wraccess_user* Specifies a user who is allowed to modify the
calendar, if the type is "INCLUDE". This field
cannot be input if the cal_wraccess_type is
"PUBLIC".

dflt_rdaccess_type? The default access control type to be used for
read access to new events (see “updateevent
Command” on page 56), one of:
"PUBLIC" -- anyone can read the event. There
must be no dflt_rdaccess_user inputs.
"INCLUDE" -- only users specified by the
dflt_rdaccess_user inputs may read the event. If
there are no dflt_rdaccess_user inputs, only
the owner of the calendar can read the new
event.

dflt_rdaccess_user* Specifes a user who is allowed to read a new
event by default, if the type is "INCLUDE".
This field cannot be input if the
cal_wraccess_type is "PUBLIC".
 45

2
XML Interface to the WebCal Group Calendar
The same restrictions apply to this type and user fields as in “updateevent
Command” on page 56.

dflt_wraccess_type? The default access control type to be used for
write access to new events (see “updateevent
Command” on page 56), one of:
"PUBLIC" -- anyone can modify the event.
There must be no dflt_wraccess_user inputs.
"INCLUDE" -- only users specified by the
dflt_wraccess_user inputs can modify the
event. If there are no dflt_wraccess_user
inputs, only the owner of the calendar
themselves can modify the new event.

dflt_wraccess_user* Specifies a user who is allowed to modify a new
event by default, if the type is "INCLUDE".
This field cannot be input if the
dflt_wraccess_type is "PUBLIC".

frbs_rdaccess_type? The type of access control to use for free-busy
lookup access to the calendar, one of:
"PUBLIC" -- anyone can request free-busy
information from the calendar. There must be
no frbs_rdaccess_user inputs.
"INCLUDE" -- only users specified by the
frbs_rdaccess_user inputs can be given free-
busy information from the calendar. If there are
no frbs_rdaccess_user inputs, only the
owner of the calendar can request free-busy
information.

frbs_rdaccess_user* Specifies a user who is allowed to request free-
busy information, if the type is "INCLUDE".
This field cannot be input if the
frbs_rdaccess_type is "PUBLIC".

schd_wraccess_type? The type of access control to use for scheduling
permissions to the calendar. For another user to
schedule an event in the calendar, they must
have such permission. This field can be:
"PUBLIC" -- anyone can schedule events in the
calendar. There must be no
schd_wraccess_user inputs.
"INCLUDE" -- only users specified by the
schd_wraccess_user inputs are allowed to
schedule events in the calendar. If there are no
schd_wraccess_user inputs, no other users
can schedule events in the calendar.

schd_wraccess_user* Specifies a user who is allowed to schedule
meetings in the calendar, if the type is
"INCLUDE". This field cannot be input of the
schd_wraccess_type is "PUBLIC".

Result <status> doctype

Table 24 permissions Command Definition (Updating)
46

 Commands
permissions Example
Example of a GET response:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE permissions SYSTEM "http://mail.example.com/dtd/xcal/v2/

permissions.dtd”>
<permissions>

<ok>OK</ok>
<perms scope="DFLT_RDACCESS" type="PUBLIC">
</perms>
<perms scope="DFLT_WRACCESS" type="PUBLIC">
</perms>
<perms scope="CAL_RDACCESS" type="INCLUDE">
. <permuser>u0_bustle</permuser>
. <permuser>u1_bustle</permuser>
</perms>
<perms scope="CAL_WRACCESS" type="INCLUDE">
. <permuser>u2_bustle</permuser>
. <permuser>u3_bustle</permuser>
</perms>
<perms scope="FRBS_RDACCESS" type="INCLUDE">
. <permuser>u4_bustle</permuser>
. <permuser>u0_bustle</permuser>
</perms>
<perms scope="SCHD_WRACCESS" type="INCLUDE">
. <permuser>u1_bustle</permuser>
. <permuser>u2_bustle</permuser>
</perms>

</permissions>

Example of a POST response:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE status SYSTEM "http://mail.example.com/dtd/xcal/v2/status.dtd”>
<status>
<ok>OK</ok>
</status>

prefs Command
The prefs commands returns the current state of the user preferences for GET
operations or updates the current state of the user preferences for POST operations.
When updating user preferences, a subset of the allowed elements can be used. Any
preference whose elements are missing from the POST are left unchanged.

For reading the preferences:

For updating the preferences:

Table 25 prefs Command Definition (For Reading Preferences)

Operation GET /mc/xcal/v2/prefs.xml

Arguments sid session ID

Result <preferences> doctype # for preferences requests

Table 26 prefs Command Definition (For Updating Preferences)

Operation POST /mc/xcal/v2/prefs.xml
 47

2
XML Interface to the WebCal Group Calendar
Arguments sid session ID

fullname user's full name

emaildiff number of minutes before event an email
reminder should be sent (default). See
definition in the “‘event’ and ‘todo’ elements”
section.

pagerdiff number of minutes before event a mobile
reminder should be sent (default). See
definition in the “‘event’ and ‘todo’ elements”
section.

emailsummarytime* hour of day when email should be sent

emailsummarytype summaries contain today’s/tomorrow’s events

pagersummarytime hour of day when email should be sent

pagersummarytype summaries contain today's/tomorrow's events

weeklysummarytime hour of day when weekly summary should be
sent

weeklysummaryday weekday when summary is sent

monthlysummarytime hour of day when monthly summary should be
sent

monthlysummaryday day of the month when monthly summary is
emailed

emailaddr address to which email reminders should be
sent

pageraddr address to which mobile reminders should be
sent

dfltview default view on login to WebCal

daystart start of day (hours from midnight)

dayend end of day (hours from midnight; must be >
daystart)

daygranularity size of blocks into which a day is divided (in
minutes)

weekdaysep show separator bar in weekly view of WebCal

showeventtxt show the description of an event with the
summary of the event in short form

showtodolist show the todo list together with the calendar in
WebCal

weekstart day on which a week starts (0==Sunday)

Table 26 prefs Command Definition (For Updating Preferences)
48

 Commands
version UI version to use in WebCal (v_noframe = no
frames, no javascript, v_nojs = frames, no
javascript, v_all = frames and javascript)

timezone timezone

published? whether the calendar is published or not. If
omitted, the published flag is left unchanged in
the calendar. If present and equal to "y", the
calendar becomes published, otherwise it
becomes not published.

Result <status> doctype for updates

Table 27 Setting Preferences: Element Semantics, Allowed Values

Name Type
Max

Length
(Chars)

Default Occur-
rences Description

fullname required 50 empty string 1 user's fullname in UTF-8.

emaildiff required 255 box default 1 See definition in the ‘getevent’s
and ‘gettodos’ sections.

pagerdiff required 255 box default 1 Same as emaildiff, but for
mobile devices.

emailsummarytime required 2 box default 1 Hour of the day to send daily
summary emails. Allowed
values: integers 0 through 23
and -1, which disables the
sending of daily email
summaries.

emailsummaytype required 1 box default 1 Should the summary mails
contains today’s events or next
day’s events. Allowed values
are 0 (send following day’s
events) and 1 (send today’s
events).

pagersummarytime required 255 box default 1 Same as emailsummarytime,
for mobile devices.

pagersummarytype required 255 box default 1 Same as emailsummarytype,
for mobile devices.

weeklysummarytime required 255 box default 1 Same as emailsummarytime,
for weekly summaries

Table 26 prefs Command Definition (For Updating Preferences)
 49

2
XML Interface to the WebCal Group Calendar
weeklysummaryday required 255 box default 1 Day of the week on which
weekly summary is emailed.
Allowed values are integers 0
through 6, with Sunday = 0,
Monday = 1, and so on.
Selecting weekstart sends the
current week's events;
everything else sends the
following week's events.

monthlysummarytime required 255 box default 1 Same as emailsummarytime,
for monthly summaries

monthlysummaryday required 255 box default 1 Sets the day of the month when
monthly summary is sent.
Allowed values:
1 (first day of the month)
-1 (last day of the month)
-2 (day before the last day of
the month)
-3 (two days before the last day
of the month)
28 - 20 (days of the month)
Selecting 1 sends the current
month's events. Selecting
anything else sends the
following month's events.

emailaddr required 255 empty string 1 Email address to use for email
reminders and daily/weekly/
monthly summaries.

pageraddr required 255 empty string 1 Email address to use for mobile
device reminders and daily
summaries.

dfltview required 1 box default 1 Default view in Mirapoint
web-based UI. Possible values
are 'd' (day view), 'h'
(horizontal weekly view), 'w'
(week view) and 'm' (month
view).

daystart required 2 box default 1 User's start of day. Valid values
are 0 through 23, where
0 = midnight, 23 = 11pm, and
so on.

dayend required 2 box default 1 User's end of day (same values
as daystart).

Table 27 Setting Preferences: Element Semantics, Allowed Values

Name Type
Max

Length
(Chars)

Default Occur-
rences Description
50

 Commands
◆ replyopt can have the following values:
(dontinclude|includeinline|includeattach)

◆ includesig can have the following values:
(yes|no)

◆ usetrash can have the following values:
(yes|no)

◆ version can have the following values:
(noframes|nojavascript|javascript)

◆ charset can have values as given in the preferences element after request.

◆ timezone can have values listed by the CLI Ntp Get Knownzones command.

daygranularity required 2 box default 1 In daily view, the size of the
units that a day is divided into.
Allowed values are 15, 30, and
60 (minutes).

weekdaysep required 1 box default 1 Shows bars between days in
the daily view. Allowed values
are "y" (yes) and "n" (no).

showeventtxt required 1 box default 1 Show the description of an
event with the title in daily and
weekly views. Allowed values
are "y" (yes) and "n" (no).

showtodolist required 1 box default 1 Show the to-do list in the main
calendar page in the Mirapoint
web-based UI. Allowed values
are "y" (yes) and "n" (no).

weekstart required 1 0 1 Day of the week on which the
user's week starts. Allowed
values are 0 through 6, where
Sunday = 0, Monday = 1, and
so on.

version required 255 v_nojs 1 UI version. v_nojs = frames but
no Javascript, v_noframe = no
frames and no Javascript
(simple mode), v_all =
Javascript and frames.

timezone required 255 box default 1 Timezone of the user. For a list
of time zones, use the CLI Ntp
Get Knownzones command.

published optional N/A n 0 or 1 If present and set to “y” (yes),
the calendar is published (and
can be subscribed to).

Table 27 Setting Preferences: Element Semantics, Allowed Values

Name Type
Max

Length
(Chars)

Default Occur-
rences Description
 51

2
XML Interface to the WebCal Group Calendar
Example: GET Response
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE preferences SYSTEM "http://mail.example.com/dtd/xcal/v2/

preferences.dtd”>
<preferences>

<ok>OK</ok>
<fullname></fullname>
<emaildiff>5</emaildiff>
<pagerdiff>-1</pagerdiff>
<emailsummarytime>-1</emailsummarytime>
<emailsummarytype>1</emailsummarytype>
<pagersummarytime>-1</pagersummarytime>
<pagersummarytype>1</pagersummarytype>

<weeklysummarytime>-1</weeklysummarytime>
<weeklysummaryday>0</weeklysummaryday>
<monthlysummarytime>-1</monthlysummarytime>
<monthlysummaryday>1</monthlysummaryday>
<emailaddr></emailaddr>
<pageraddr></pageraddr>
<dfltview>w</dfltview>
<daystart>8</daystart>
<dayend>18</dayend>
<daygranularity>60</daygranularity>
<weekdaysep>y</weekdaysep>
<showeventtxt>n</showeventtxt>
<showtodolist>y</showtodolist>
<weekstart>0</weekstart>
<version>v_nojs</version>
<timezone>Etc/GMT</timezone>
<published>n</published>

</preferences>

Example: POST Response
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE status SYSTEM "http://mail.example.com/dtd/xcal/v2/status.dtd”>
<status>
<ok>OK</ok>
</status>

search Command
The search command searches for events and to-do items in the calendar store and
returns any events whose description or title contain one or more of the keywords
supplied in the search string.

Table 28 search Command Definition

Operation GET /mc/xcal/v2/search.xml

Arguments sid session id

searchstr search string. Its length can be between 0
through 255 characters.

fqdn "yes" to fully qualify all userIDs in the top
level in the events returned, "no" to not. This
command defaults to "no".
52

 Commands
search example
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE calendar SYSTEM "http://mail.example.com/dtd/xcal/v2/calendar.dtd”>
<calendar>
<ok>OK</ok>
<event>
...
</event>
<event>

<eventid>e102a58401</eventid>
<eventtitle>a partial event title</eventtitle>
<eventdesc>a partial event description</eventdesc>
<eventstart>20020325T070000Z</eventstart>
<eventstop>20020325T080000Z</eventstop>
<viewablestart>20020325T070000Z</viewablestart>
<viewablestop>20020325T080000Z</viewablestop>
<allday/>
<eventpriority>5</eventpriority>
<eventemaildiff>5</eventemaildiff>
<eventpagerdiff>5</eventpagerdiff>
<eventnotifylist>
. <eventnotifyelement>g@m.com</eventnotifyelement>
. <eventnotifyelement>u2_bustle</eventnotifyelement>
</eventnotifylist>
<eventrrule>D1 20020501T000000Z</eventrrule>
<eventxdata>a partial eventxdata</eventxdata>
<created>20020620T135600Z</created>
<dtstamp>20020620T135658Z</dtstamp>
<last-modified>20020620T135600Z</last-modified>
<sequence>3</sequence>
<x-mira-sendmail/>
<attendees>
. <attendee role="CHAIR" partstat="ACCEPTED">t0</attendee>
. <attendee role="REQ-PARTICIPANT" partstat="NEEDS-ACTION">t1</attendee>
. <attendee role="REQ-PARTICIPANT-" partstat="NEEDS-ACTION">t2</attendee>
</attendees>
<extattendees>
. <extattendee partstat="NEEDS-ACTION">g@m.com</extattendee>
. <extattendee partstat="NEEDS-ACTION">t4_hwtest29</extattendee>
</extattendees>
<resources>
. <resource partstat="ACCEPTED">Diablo_cr</resource>
. <resource partstat="ACCEPTED">projector</resource>
</resources>
<perms scope="EVENT_RDACCESS" type="INCLUDE">
. <permuser>u0_polarbear</permuser>
. <permuser>u1_bustle</permuser>
</perms>
<perms scope="EVENT_WRACCESS" type="INCLUDE">
. <permuser>u1_polarbear</permuser>
. <permuser>u1_bustle</permuser>
</perms>

</event>
<todo>

<todoid>t104901e00</todoid>
<todotitle>Need to buy a mirapoint server</todotitle>
<tododesc>The stuff we talked about yesterday.</tododesc>

Result A <calendar> element containing 0 or more <event> and/or <todo>
elements that match the search string.

Table 28 search Command Definition
 53

2
XML Interface to the WebCal Group Calendar
<todopriority>5</todopriority>
<created>20020620T121400Z</created>
<dtstamp>20020620T135658Z</dtstamp>
<last-modified>20020620T121400Z</last-modified>
<sequence>2</sequence>
<due>20020629T060000Z</due>
<completed>20020630T060000Z</completed>

</todo>
</calendar>

subscriptions Command
The subscriptions command is used for editing the list of calendars to which the
user is subscribed.

When a user subscribes to a calendar (which must first be published), all events to
which the user has read access automatically appear in their calendar (that is, are
returned by the getevents command) in read-only mode.

A GET of the page returns a <userlist> doctype with a list of the users to which
the user is subscribed and a POST of the page updates that list:

The XML interface to the calendar lets queries be made that return a list of users
(for example, LDAP queries to find a user based on a search string, list of
subscribed calendars). The userlist doctype and elements are used to represent
such a list of users. It is described below.

To update the subscription list:

The calendars listed by the subscribeto inputs in the POST described above
overwrite any existing subscription list. A client deletes an entry from the list by
first doing a GET operation to get the subscription list, removing the entry and then

Table 29 subscriptions Command Definition (Retrieve)

Operation GET /mc/xcal/v2/subscriptions.xml

Arguments sid session ID

fqdn "yes" to fully qualify all userIDs in the top level in the
events returned, "no" to not. This defaults to "no".

Result <userlist> doctype

Table 30 subscriptions Command Definition (Update)

Operation POST /mc/xcal/v2/subscriptions.xml

Arguments sid session ID

subscribeto* A user whose calendar the calendar should be
subscribed to. One of these input values must be
present for each calendar that is to be subscribed to.
The values used must be the userids found in <userlist>
doctypes (that is, obtained using the finduser
command).
Maximum length per instance is 255 characters.

Result <status> doctype
54

 Commands
POSTing the list back to the server. A single empty subscribeto field causes all
subscribeto entries to be deleted in the subscription list.

The <user> element contains a user-viewable form of the username, which can be
either the user's login ID or an RFC-822 compliant phrasal form of their email
address. The userid attribute is a string that must be used by the client whenever
referring to one of the listed users in a request to the server.

subscriptions Example
Example of a GET response:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE userlist SYSTEM "http://mail.example.com/dtd/xcal/v2/userlist.dtd”>
<userlist>

<ok>OK</ok>
<users>
. <user userid="u1_belldandy">"User 1 on belldandy,
u1_bbelldandy" <u1_belldandy></user>
. <user userid="u1_bench350">"User 1 on bench350, u1_bench350"
<u1_bench350></user>
. <user userid="u1_bustle">"User 1 on bustle, u1_bustle"
<u1_bustle></user>
. <user userid="u1_chrysos">"User 1 on chrysos, u1_chrysos"
<u1_chrysos></user>
. <user userid="u1_polarbear">"User 1 on polarbear, u1_polarbear"
<u1_polarbear></user>
. <user userid="u1_qa121">"User 1 on qa121, u1_qa121"
<u1_qa121></user>
. <user userid="u1_webclient25">"User 1 on
webclient25,u1_webclient25" <u1_webclient25></user>
</users>

</userlist>

Example: POST Response
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE status SYSTEM "http://mail.example.com/dtd/xcal/v2/status.dtd”>
<status>
<ok>OK</ok>
</status>

time Command
The time command displays the server's current time in GMT.

time Example
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE version SYSTEM "http://mail.example.com/dtd/xcal/v2/status.dtd">
<status>

<ok>20040821T052225Z</status>
</status>

Table 31 time Command Definition

Operation GET /mc/xcal/v2/time.xml

Result <time> document
 55

2
XML Interface to the WebCal Group Calendar
updateevent Command
The updateevent command creates a new, or updates an existing, event in the
calendar store.

If the eventemaildiff or eventpagerdiff elements are omitted, values are taken
from the calendar's defaults. For details of field defaults and sizes, see the
“getevents Command” on page 29. eventid is an optional field.

To create an exception, specify <parenteventid>-<exceptiondate> as the eventid.

◆ If eventid is not provided, eventtitle is required, and all other fields are
optional.

◆ If eventid is provided, all fields are optional (although passing no fields does
not change the event), and only those provided replace the existing values. To
erase a value, supply a replacement value or an empty value as follows (an
empty string is referred to as a string of zero length):

a. eventtitle can be cleared by setting it to an empty string only if eventid is
specified. eventtitle can be cleared but never be deleted from the event.

b. allday, priority, eventemaildiff, eventpagerdiff, start, stop, and
sendmail can be replaced only by specifying one of their pre-defined values.

c. eventdesc, eventnotifylist, rrule, eventxdata, attach: An empty
string deletes the entry from the event. If no entry is given, the entry remains
unchanged in the event. However given an empty string, attach deletes all
attachments. To delete just one attachment, use attachdelete instead.

d. x-mira-agent: A log entry is written out if this entry is provided.
e. attendee, extattendee, resource: A list composed of a single empty value

causes all entries to be deleted in the event. Any empty entry among other
non-empty entries is an error condition. If no entries are given, the entries
remain unchanged in the event.

f. rdaccess_type, rd_access_user, wraccess_type, wr_access_user:
If the type field is set to PUBLIC, no user entries must be present.
If the type field is INCLUDE, at least one corresponding (for example, rd or
wr) user entry must be present. A list composed of a single empty user entry
deletes all existing user entries from the event. Any empty user entry among
other non-empty user entries is an error condition. If no user entries are
given, the entries remain unchanged in the event.
56

 Commands
Table 32 updateevent Command Description

Operation POST /mc/xcal/v2/updateevent.xml

Arguments sid session ID

eventid? event ID; can be omitted only for a new event
being created. In that case, eventtitle is not
required.

clientid (optional) Client ID of the event. The maximum
number of chars allowed is 1024.

eventtitle Title; Optional if eventid is provided. If
provided with eventid, it replaces the existing
eventtitle value.

eventdesc? Description of the event.

allday? "y" if this is an all-day event.

priority? 1 to 5, 1 is highest priority.

eventnotifylist? list of email addresses to which notification
should be sent. Maximum length = 65531

rrule? a vCalendar RRULE string; "D", "W", "MP",
"MD", "YM" types are supported. The "YD"
type is not supported. Weekly repeating events
may occur on any combination of weekdays.
Monthly repeating events may only occur once
per month. Events can repeat until a specific date
or repeat forever (or until the maximum
supported time).

start start date, in ISO-8601.

stop stop date, in ISO-8601.

eventemaildiff number of minutes before event reminder is sent.
-1 means that no reminder is desired. See
definition in the “‘event’ and ‘todo’ elements”
section.

eventpagerdiff Same as eventemaildiff, but for mobile devices.
See definition in the “‘event’ and ‘todo’
elements” section.

eventxdata? client side data.

attendee* the userid (see “subscriptions Command” on
page 54) of an attendee that is invited to a
meeting. There can be multiple instances of this
value in the POST.
 57

2
XML Interface to the WebCal Group Calendar
extattendee* the (RFC-822 compliant) email address of an
external attendee that is invited to a meeting.
There can be multiple instances of this value in
the POST. If extsendmail=y, all external
attendees receive email containing a URL that
they can use to accept or decline the invitation.

resource* the userid (see “subscriptions Command” on
page 54) of a resource that is scheduled for a
meeting. There can be multiple instances of this
value in the POST.

eventlocation? user-supplied information about location, stored
in the user's database and in all attendees'
databases for the event. Specifying an empty
eventlocation field deletes the location from pre-
existing events. Not specifying this field leaves
data on the server unchanged. Only the event
owner can change this field.

category* The name of a category associated with a
meeting. If a case-insensitive match of a category
specified matches one that exists on the
Mirapoint system, that is used; otherwise a new
category with that name is created. A new
category created in this way defaults to using the
calendar default ACLs. The color of the category
is undefined. If the event being updated already
contains a list of associated categories, it is
replaced with the list provided by the
updateevent.xml request.

sendmail? If present and equal to "y", the server sends out
notification emails to all attendee's specified by
the attendee inputs. This flag is stored in the
event record so subsequent changes through
other interfaces also cause mail to be sent. The
state of this flag is viewable in the event DTD
and via the native Mirapoint web interface.

extsendmail? If present and equal to "y", the server sends out
notification emails to external attendees. This
flag affects the current operation only.

Table 32 updateevent Command Description
58

 Commands
rdaccess_type? The type of access control to a user for read
access permissions to the event, one of:
"PUBLIC" -- anyone with read access to the
calendar can read the event. There must be no
rdaccess_user inputs.
"INCLUDE" -- only users specified by the
rdaccess_user inputs and who have read access
to the calendar can read the event. If there are no
rdaccess_user inputs, only the owner of the
event can read it.
"DEFAULT" -- default calendar permissions. If
there are categories associated with the event, for
an operation to be performed on the event, ACL
rules for at least one of the categories must be
satisfied. If no categories are associated with the
event, the calendar default ACLs are used.
If this is a new event and no access is specified,
"DEFAULT" is used.

rdaccess_user* The userid (see “subscriptions Command” on
page 54) of a user who is allowed to read the
event (if they have read access to the calendar).

wraccess_type? The type of access control to a user for write
access permissions to the event, one of:
"PUBLIC" -- anyone can write the event who
has write access to the calendar. There must be
no wraccess_user inputs.
"INCLUDE" -- only users specified by the
wraccess_user inputs and who have write
access to the calendar can write to the event. If
there are no wraccess_user inputs, only the
owner of the event can modify it.
"DEFAULT" -- default calendar permissions.
If this is a new event and no access is specified,
"DEFAULT" is used.
For a description of how "DEFAULT" ACLs are
handled, see rdaccess_type.

wraccess_user* The userid (see “subscriptions Command” on
page 54) of a user allowed to write to the event
(if they have write access to the calendar).

attach* Multiple attachments can be added when
creating an event.

attachdelete? Specifies filename(s) of attachment(s) to remove
from the event. Attach is processed afterwards to
ensure proper replacement of attachments.

x-mira-agent? (optional) A text string that identifies the client
software. This string is not stored with the event
record, but can be used for logging. Maximum
length is 63 characters.

Table 32 updateevent Command Description
 59

2
XML Interface to the WebCal Group Calendar
To create a new event, the event ID field should be missing. An empty eventid is
considered an error.

attendeefallback? (optional) Affects what happens when meetings
cannot be schedules with some of the specified
attendees. These values are accepted:
none - Operation fails, the current default.
discard - Unschedulable attendees are discarded.
external - Unschedulable attendees go external.

timezone? (optional) Specifies the timezone the event is to
be created in (for relevance, see “Repeating
Events” on page 20). The value must be one of
the current time zone values listed by the CLI
Ntp Get Knownzones command. If this
parameter is absent, the event is created in the
timezone in the user’s preferences.

status? for group events, sets the event's status: accepted
(status=accept) or declined (status=decline)

metadata* contains the name of the opaque data variable
(maxlen = 255) and the value element (maxlen =
1024). To set the data, the name should be
separated by a colon from the value, as in
for:bar. The server stores and preserves all
metadata fields for the client.

sequence Allows client to set sequence number attribute.
This is the same sequence number present in
iCal/iTIP/iMIP messages as the SEQUENCE
property. Integer >= 0.

sequenceinit A property Outlook uses to generate sequence
numbers for owner events. The server stores this
as opaque data and returns it in <event>
elements. Integer >= 0.

clientlastmodified Allows client to set an event timestamp. This
value is stored in the event record and returned
by the <event> element replying to getevents.xml
(see below). ISO-8601 date/time.

replytime Outlook ReplyTime property, updated when a
user accepts or declines an invitation. The server
stores this property and returns it in <event>, but
does not actually use it. ISO-8601 date/time.

masterclientid Clientid of master (parent) record of a repeating
series. Stored as opaque data in event records
and not used for server scheduling logic. Event
lookups cannot be done on masterclientid. Used
by SynQ for meetings where an exception arrives
before repeating series. ASCII string.

<update> doctype

Table 32 updateevent Command Description
60

 Commands
The eventxdata field is for client application use. This element's data is stored with
the event, and is retrievable from "event" elements, but is not processed by the
server.

If the specified eventid is the parent eventid (i.e. no -<date> is present), the entire
series is modified. If instance is set to "all", all exceptions are deleted. Otherwise
the exceptions are preserved as specified in the "Changing Calendar Repeating
Event Whole Series" protocol spec.

The only event attributes that attendees can change (that is, users other than the
owner and a user who accessed the calendar with write permissions using the
viewother.xml command) are: category, eventemaildiff, eventpagerdiff,
rdaccess_type, rdaccess_user, wraccess_type, and wraccess_user.

updateevent Example
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE login SYSTEM "file:///mc/xcal/v2/update.dtd">
<update>

<ok>20040101T120030Z</ok>
<gid>ef00bar</gid>
<last-modified>20030804T230812</last-modified>
<event>
<eventid>e102822001</eventid>
<eventtitle>an event with 3 attendees</eventtitle>
<eventdesc>a full different event description</eventdesc>
<eventstart>20020319T000000Z</eventstart>
<eventstop>20020319T010000Z</eventstop>
<viewablestart>20020319T000000Z</viewablestart>
<viewablestop>20020319T010000Z</viewablestop>
<eventpriority>4</eventpriority>
<eventemaildiff>10</eventemaildiff>
<eventpagerdiff>10</eventpagerdiff>
<eventxdata>a full different eventxdata</eventxdata>
<created>20020620T103400Z</created>
<dtstamp>20020620T120512Z</dtstamp>
<last-modified>20020620T110500Z</last-modified>
<sequence>12</sequence>
<attendees>
<attendee role="CHAIR" partstat="ACCEPTED">t0</attendee>
<attendee role="REQ-PARTICIPANT" partstat="DECLINED">t1</attendee>
<attendee role="REQ-PARTICIPANT" partstat="ACCEPTED">t2</attendee>
<attendee role="REQ-PARTICIPANT" partstat="NEEDS-ACTION">t3</attendee>
<attendee role="REQ-PARTICIPANT" partstat="NEEDS-ACTION">"grpcal Test User
4 on hwtest29, t4_hwtest29" <t4_hwtest29></attendee>
</attendees>
<extattendees>
<extattendee partstat="NEEDS-ACTION">g@m.com</extattendee>
<extattendee partstat="NEEDS-ACTION">u0</extattendee>
</extattendees>
<resources>
<resource partstat="ACCEPTED">diablo</resource>
<resource partstat="ACCEPTED">projector</resource>
</resources>
<perms scope="EVENT_RDACCESS" type="INCLUDE">
<permuser>u0_polarbear</permuser>
<permuser>u0_bustle</permuser>
</perms>
<perms scope="EVENT_WRACCESS" type="INCLUDE">
<permuser>u0_polarbear</permuser>
<permuser>u1_bustle</permuser>
 61

2
XML Interface to the WebCal Group Calendar
</perms>
<metadata>
<name>eventstatus</name>
<value>Tentative</value>
</metadata>
</event>

</update>

The <gid> element is used to communicate the ID of the event or to-do item that is
being created or updated. This is useful when creating a new event or to-do item,
because when specifying it, the event ID is as yet unknown. <last-modified> is the
last modified time of the event that was changed/added.

updatetodo Command
The updatetodo command creates, or updates an existing, to-do item in the
calendar store.

◆ If todoid is not provided, todotitle is required, and all other fields are
optional. todotitle can never be completely removed from the to-do item.

◆ If todoidid is provided, all fields are optional (although passing no fields do
not change the to-do), and only those provided replace the existing values. To

Table 33 updatetodo Command Definition

Operation POST /mc/xcal/v2/updatetodo.xml

Arguments sid session ID

todoid todo ID; can be omitted only for a new to-do
being created. In that case, todotitle is not
required.

todotitle Title; Optional if todoid is provided. If
provided with todoid, it replaces the existing
todotitle value.

tododesc?

priority? 1 through 5, 1 is highest priority.

todoxdata? A general-purpose string that lets client
software store its own data in the to-do item.
The Mirapoint calendar store does not alter
this field’s contents.

due? (optional) ISO 8601 time that the to-do item is
due. If not present, the to-do item has no due
date.

completed? (optional) ISO 8601 time that the to-do item is
completed. If not present, the to-do item has
no completed date.

x-mira-agent? (optional) A text string that identifies the client
software. This string is not stored with the
event record, but can be used for logging.

Result <update> doctype
62

 Commands
erase a value, you must supply a replacement value or an empty value (an empty
string is referred to as a string of zero length):

a. todotitle can be cleared by setting it to an empty string only if a todoid is
specified. todotitle can be cleared but never removed from the to-do.

b. priority can be replaced only by specifying one of its pre-defined values.
c. tododesc, todoxdata, due, completed: An empty string deletes the entry

from the event. If no entry is given, the entry remains unchanged in the
event.

d. x-mira-agent: A log entry is written out if this entry is provided.

updatetodo Example
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE update SYSTEM "http://when/mc/xcal/v2/update.dtd">
<update>

<ok>OK</ok>
<gid>tf00bar</gid>
. <last-modified>20030804T230812</last-modified>
<todo>
. <todoid>t104901e00</todoid>
. <todotitle>Need to buy a mirapoint server</todotitle>
. <tododesc>The stuff we talked about yesterday.</tododesc>
. <todopriority>1</todopriority>
. <created>20020620T121400Z</created>
. <dtstamp>20020620T121449Z</dtstamp>
. <last-modified>20020620T121400Z</last-modified>
. <sequence>2</sequence>
. <due>20020629T060000Z</due>
. <completed>20020630T060000Z</completed>
</todo>

</update>

vcalexport Command
The vcalexport command is used to export calendar information in vCalendar
format.

The request is sent via an HTTP GET message. If either lowerbound or upperbound
are equal to "*", that bound is treated as unbounded. So
lowerbound=*&upperbound=* results in the whole calendar being exported.

vcalexport Example
The response is of text/x-vCalendar MIME type.

Table 34 vcalexport Command Definition

Operation GET /mc/xcal/v2/vcalexport.vcs

Arguments sid session ID

lowerbound start of window in ISO-8601

upperbound end of window in ISO-8601

Result text/x-vCalendar MIME type
 63

2
XML Interface to the WebCal Group Calendar
vcalimport Command
The vcalimport command is used to import calendar information in vCalendar
format.

Data is imported by making an HTTP POST request to the server; the Content-Type
MUST be "multipart/form-data" and the HTTP message body must be formatted
as such. For example:

POST /mc/xcal/v2/vcalimport.xml HTTP/1.0
Connection: Keep-Alive
Host: chrysos
Content-type: multipart/form-data; =---------------------------

932532621266032265521827728
Content-Length: 953

-----------------------------932532621266032265521827728
Content-Disposition: form-data; name="sessionid"

861701f76aed4586246b96a2d99c9420
-----------------------------932532621266032265521827728
Content-Disposition: form-data; name="vcupload"

Import
-----------------------------932532621266032265521827728\r
Content-Disposition: form-data; name="vcvcal"; filename="test.vcs”

BEGIN:VCALENDAR
PRODID:-//Mirapoint Calendar
VERSION:1.0
BEGIN:VEVENT
UID:20010807T1500Z-0-b@chrysos.mirapoint.com

[etc ...]

END:VCALENDAR

-----------------------------932532621266032265521827728--

vcalimport example
The response is a status response.

version Command
The version command displays the XML protocl version and the MOS version.

Table 35 vcalimport Command Definition

Operation POST /mc/xcal/v2/vcalimport.xml

Arguments sid session ID

vcvcal vCalendar data

Result <status> doctype

Table 36 version Command Definition

Operation GET /mc/xcal/v2/version.xml

Result <version> document
64

 Commands
version Example
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE version SYSTEM "http://mail.example.com/dtd/xcal/v2/version.dtd">
<version>

<interface>2.0</interface>
<mos>3.4.1.18</mos>

</version>

viewother Command
The viewother command is used to view and/or modify a calendar other than that
of the user currently logged in. In this section, the user performing the "viewother"
request is the "requesting user" and the user whose calendar is being requested is
the "user".

Because the user and requesting user calendars are not necessarily hosted by the
same server, a two-stage transaction is required for security reasons:

1. The requesting user performs a POST request to the requesting user's server.
The server performs permissions validation and, if the requesting user is
allowed to read the user's calendar, a URL is returned in an HTTP 302 redirect
message (this URL will point to the server hosting the user's calendar). The
client software follows this redirect. A GET to the URL provided in the redirect
message "logs on" the requesting user to the user's calendar.

2. The user's calendar server validates that the request it received is a authentic by
confirming details with the requesting user's server. Once the request is
validated, the user's server creates a new session to be used when viewing the
user's calendar. The new sessionid is returned in a viewother doctype
(described below).

The old sessionid used by the requesting user can still be used to access the
requesting user's calendar, but the new one must be used to view the user's calendar.

Event and to-do data exported or edited via the viewother.xml command are
subject to the ACLs of the events and the categories of the events (if any). Event

Table 37 version DTD Fields

Name Type
Max

Length
(Chars)

Default Occur-
rences Description

interface required 128 N/A 1 The XML version of the Mirapoint Group
Calendar XML API. It consists of two
numbers, comma seperated. The first is the
major number. The second is the revision
number that increases each time the protocol
changes. The version should not be treated as a
float point number (for example, 2.10 comes
after 2.9).

mos required 128 N/A 1 Identifies the MOS version (for example, 3.8.4)
 65

2
XML Interface to the WebCal Group Calendar
access rights of "DEFAULT" mean "apply category ACLs if available, otherwise use
the calendar defaults". MOS 3.6 does not support categories for to-do items.

All viewother fields are the same as for the login response, except for x-mira-
readonly which is specific to the viewother command. If this field is present in the
viewother doc returned, the requesting user is only allowed read access to the user's
calendar and any attempts to modify it in this session fail.

viewother Example
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE viewother SYSTEM "http://mail.example.com/dtd/xcal/v2/

viewother.dtd”>
<viewother>

<ok>OK</ok>
<sid>a996446bda98d40ad4e7414e93bf41c6</sid>
<x-mira-readonly/>

<emaillist>
<email type="primary">komal.kaks@dummy.com</email>
<email>komalkaks@dummy.com</email>
<email>kkaks@dummy.com</email>

</emaillist>
</viewother>

Table 38 viewother Command Definition

Operation POST /mc/xcal/v2/viewother.xml

Arguments sid session ID

user The login ID of the user whose calendar we wish to
view.

Result HTTP 3.0.2 redirect message, containing a URL that when used in a GET
request connects to the user's calendar host. This second GET operation
returns a <viewother> doctype.
66

3

XML Interface to the Mirapoint Message Base
The Mirapoint XML interface to the Mirapoint Message Store uses the HTTP
protocol to retrieve XML documents from Mirapoint systems representing the
requested data in XML document format.

The kinds of information available to application developers are similar to what
can be accessed via the IMAP protocol. Unlike IMAP, the XML interface provides
access to message data without having to parse MIME data or decode BASE64
transmission encodings. This simplifies applications such as voicemail or streaming
multimedia.

In addition to accessing a Mirapoint Message Base, application developers can use
this interface to send email through the Mirapoint system. This interface alleviates
application developers from having to know details of SMTP, MIME, attachments,
and transmission encodings.

Finally, this interface provides access to WebMail preferences.

Message Addressing
For operations that operate over several messages, there are three techniques used
to specify message ranges: specifying msgids, uids, or msgid ranges. You can use any
of the three techniques, but two techniques cannot be used together.

Specifying msgids
A msgid is the ordinal value of a message in a mailbox, where the first msgid is 1.
When specifying individual msgids, the argument name is "msgids", and the query
component looks as follows:

Example, to specify msgids 33, 44, and 100:

msgids=33&msgids=44&msgids=100

Specifying uids
A uid is an unique value assigned a message in a mailbox. Uids for message in a
mailbox are returned via the index command. The query component looks as
follows to request uids 2353, 5666, and 9953:

Example, to specify uids 2353, 5666, and 9953:

uids=2353&uids=5666&uids=9953
67

3
XML Interface to the Mirapoint Message Base
Specifying msgid Ranges
To specify ranges of msgids to be used in an operation, the msgranges argument is
used. The first msgranges value specified is the start of a message range, the 2nd
msgranges value is the end of the first range, the 3rd value is the start of the 2nd
range, the 4th value is the end of the 2nd range, and so on. There is a special value
"*" which means the last msgid of the mailbox.

Example, for msgid 3 thru 30 and 45 thru 55:

msgranges=3&msgranges=30&msgranges=45&msgranges=55

Example, for msgid 1 to the last msgid:

msgranges=1&msgranges=*

Commands
This section describes the commands available in the Mirapoint Message Base XML
interface.

append Command
The append command appends a message to a mailbox. The message is in RFC822
text format.

body Command
The body command returns a set of xlinks that point to the components of a
particular message. The first link returned points to the raw message contents, and
the subsequent links point to the remaining MIME body parts. The document type
is returned if known, otherwise the xlink:type attribute is empty. If empty, the
document type can be deduced from the extension of the document name. This
version provides no support for multipart/related MIME attachments.

Table 39 append Command Definition

Operation POST /wm/xml/v1/append.xml

Arguments sessionid session ID

mailbox mailbox name

rfc822msg me

Result BAD element

NO element

OK element

Table 40 body Command Definition

Operation GET /wm/xml/v1/body.xml
68

 Commands
Possible Errors
<no>System I/O error</no>
<no>Your session has timed out</no>
<bad>Invalid mailbox name</bad>
<bad>Invalid unique message id</bad>
<bad>Invalid message id</bad>
<bad>Missing uid or msgid value</bad>

Body Element
The body elements returns a set of links that point to the contents of the message.
These links often do not return XML documents, rather documents whose type is
specified by the xlink:type attribute.

The first bodypart in a body element is always a link to the RFC822 message. The
second bodypart element contains the first body part of the message, with
subsequent bodypart elements following.

Example

In this example, the message contains five body parts of various type and subtype:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE body SYSTEM "http://qa18.example.com/dtd/xml/v1/body.dtd">
<body>
<bodypart type="TEXT/PLAIN" href="http://qa150.example.com/wm/xml/v1/

rfc822.txt?sessionid=2cea02183474ec897573d4188c0a0a70&mailbox=attachme
nts&uid=1">RFC822 message</bodypart>

<bodypart type="APPLICATION/OCTET-STREAM" href="http://qa150.example.com/wm/
mail/genimage/
zz.c?sessionid=2cea02183474ec897573d4188c0a0a70&uid=1&off=1530&
;len=854&enc=0&type=APPLICATION&sub=OCTET-STREAM">zz.c</
bodypart>

<bodypart type="APPLICATION/MSWORD" href="http://qa150.example.com/wm/mail/
genimage/
Readme.doc?sessionid=2cea02183474ec897573d4188c0a0a70&uid=1&off=25
17&len=65252&enc=1&type=APPLICATION&sub=MSWORD">Readme.doc
</bodypart>

<bodypart type="IMAGE/GIF" href="http://qa150.example.com/wm/mail/genimage/
bfly2.gif?sessionid=2cea02183474ec897573d4188c0a0a70&uid=1&off=678
92&len=2374&enc=1&type=IMAGE&sub=GIF">bfly2.gif</bodypart>

<bodypart type="TEXT/HTML" href="http://qa150.example.com/wm/mail/genimage/
addr.html?sessionid=2cea02183474ec897573d4188c0a0a70&uid=1&msgid=1
&off=70389&len=13970&enc=1&type=TEXT&sub=HTML">addr.ht
ml</bodypart>

Arguments sessionid session ID

mailbox mailbox name

msgid message ID (or...)

uid message user ID

Result BAD element

NO element

Body element

Table 40 body Command Definition
 69

3
XML Interface to the Mirapoint Message Base
<bodypart type="TEXT/PLAIN" href="http://qa150.example.com/wm/mail/genimage/
New+Text+Document.txt?sessionid=2cea02183474ec897573d4188c0a0a70&uid=1
&off=84493&len=1134&enc=0&type=TEXT&sub=PLAIN">
New+Text+Document.txt</bodypart>

<bodypart type="TEXT/HTML" href="http://qa150.example.com/wm/mail/genimage/
gb2312.html?sessionid=2cea02183474ec897573d4188c0a0a70&uid=1&msgid
=1&off=85752&len=3680&enc=1&type=TEXT&sub=HTML">gb2312
.html</bodypart>

</body>

bodystructure Command
The bodystructure command is used to fetch the body structure from the host for a
particular message based on its message id or uid. The body that is returned is
actually base64 encoded due to the presence of special characters such as
parentheses and symbols like ">" and "<". So if body structure has to be used in
the form which will be returned as imap returns, the return value of this command
needs to be decoded from its base64 encoding.

This command is supposed to be used internally by WebMail.

Result

OK Element - if parameters passed to the system are correct. Even though the msgid
might not exist or mbox might not be found, the returned value will be OK only.

Structure Element - This might be empty if there is no body structure associated
with the parameters passed to the command.

Possible Errors
<no>XML Invalid Session</no>
<no>XML IO Error</no>

Example: Response Returned from Server
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE bodystructure SYSTEM "http://qa18/dtd/xml/v1/bodystructure.dtd">
<bodystructure>

<structure>KCJURVhUIiAiUExBSU4iICgiQ0hBUlNFVCIgInVzLWFzY2lpIikgTklMIE5JTCA
iN0JJVCIgMjMwIDggTklMIE5JTCBOSUwp</structure>

</bodystructure>

Table 41 bodystructure Command Definition

Operation GET /wm/xml/v1/bodystructure.xml

Arguments sessionid ID of a valid session on this host

mailbox name of the mailbox where this message resides

msgid message ID of message (or...)

uid message user ID

Result OK element

Structure element
70

 Commands
Structure Element -Body Structure
The structure element returns the base64 encoded data for the associated body type
structure.

compose Command
The compose command performs the operations needed to send a message with
attachments. Because of the large nature of the arguments of this command,
Mirapoint recommends that MIME encoded messages be used to provide
arguments for this action.

Notes

◆ to, cc, and bcc can include multiple comma-separated recipients

◆ savesent is meaningless if composing a draft document

◆ savesent and includesig should have the value "on" when used. In a browser,
they would be equivalent to checkboxes

◆ msg_priority can be any value from one through three or one through five,
depending on system configuration

Possible Errors
<no>System I/O error</no>
<no>Your session has timed out</no>
<no>Folder already exists</no>

Table 42 compose Command Definition

Operation POST /wm/xml/v1/compose.xml

Arguments sessionid session ID

op mailbox operation (send | draft)

to To field recipients

cc Cc field recipients

bcc Bcc field recipients

subject? message subject

message? message body

attach* attachment name

savesent+ save in Sent folder (on)

includesig+ include signature in message (on)

msg_priority+ message priority

Result BAD element

OK element

NO element
 71

3
XML Interface to the Mirapoint Message Base
<no>SMTP is not running</no>
<no>Error composing document</no>
<no>Address book timed out</no>
<no>Missing file in Attachment: field</no>
<no>Missing or empty file in Attachment: field</no>
<no>Attachment already exists</no>
<no>Mail host timed out</no>
<no>No recipients specified</no>
<bad>Invalid op value</bad>
<bad>Use a comma (,) between addresses</bad>
<bad>Too many recipients</bad>

Example
C: POST /wm/xml/v1/compose.xml HTTP/1.1
C: Host: host1
C: Content-Length: 14342
C: Content-Type: multipart/form-data; boundary=xxx
C:
C: --xxx
C: Content-Disposition: form-data; name="sessionid"
C:
C: 14324
C: --xxx
C: Content-Disposition: form-data; name="op"
C:
C: send
C: --xxx
C: Content-Disposition: form-data; name="to"
C:
C: Ben Franklin <ben@domain.com>
C: --xxx
C: Content-Disposition: form-data; name="to"
C:
C: George Washington <george@domain.com>
C: --xxx
C: Content-Disposition: form-data; name="subject"
C:
C: How about lunch
C: --xxx
C: Content-Disposition: form-data; name="attach"
C:
C: menu.html
C: --xxx
C: Content-Disposition: form-data; name="attach";
C:
C: menu.gif
C: --xxx
C: Content-Disposition: form-data; name="menu.html"; filename="menu.html"
C: Content-Type: text/html
C:
C: <html>
C: ...
C: </html>
C: --xxx
C: Content-Disposition: form-data; name="menu.gif"; filename="menu.gif"
C: Content-Type: image/gif
C:
C: GIF BINARY DATA
C: ...
C: --xxx
C: Content-Disposition: form-data; name="message"
C:
C: What about lunch today?
72

 Commands
C: --xxx
C: Content-Disposition: form-data; name="savesent"
C:
C: on
C: --xxx--

Sample Response
<?xml version="1.0"?>
<!DOCTYPE ok SYSTEM "http://qa150.example.com/dtd/xml/v1/ok.dtd">
<ok>Successfully composed document</ok>

expunge Command
The expunge command expunges the specified mailbox. The action may fail if the
user doesn't have write access to the mailbox.

Possible Errors
<no>System I/O error</no>
<no>Your session has timed out</no>
<no>Folder not expunged</no>
<no>Permission denied</no>
<bad>Folder does not exist</bad>

Example: Valid Response
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE ok SYSTEM "http://qa18.example.com/dtd/xml/v1/ok.dtd">
<ok>Folder expunged</ok>

index Command
The index command returns message summary information for zero or more
messages in a mailbox.

Table 43 expunge Command Definition

Operation POST /wm/xml/v1/expunge.xml

Arguments sessionid session ID

mailbox mailbox name

Result BAD element

OK element

NO element

Table 44 index Command Definition

Operation GET /wm/xml/v1/index.xml
 73

3
XML Interface to the Mirapoint Message Base
Possible Errors
<no>System I/O error</no>
<no>Your session has timed out</no>
<bad>Folder does not exist</bad>
<bad>Invalid unique message id</bad>
<bad>Invalid message id</bad>
<bad>Invalid message range</bad>
<bad>Operation is not supported on folder</bad>

Index Element
The index element returns attributes associated with a message. This includes the
From, Subject, and Date fields. Also returned are the flags associated with a
message.

Example
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE indexlist SYSTEM "http://qa18.example.com/dtd/xml/v1/indexlist.dtd">

<indexlist>
. <index>
. . <msgid>1</msgid>
. . <uid>1</uid>
. . <date>20010719135959</date>
. . <subject>ALERT! qa18.example.com (00902773acea)</subject>
. . <size>2193</size>
. . <from>qa18.example.com Monitor System
<Administrator@qa18.example.com></from>
. . <tolist>
. . .<to>administrator@qa18.example.com</to>
. . </tolist>
. . <cclist>
. . . <cc>Joe Bob <joe></cc>
. . . <cc>Billy Joe <billy></cc>
. . </cclist>
. . <seen/>
. </index>
. <index>
. . <msgid>2</msgid>
. . <uid>3</uid>
. . <date>20010720002053</date>
. . <subject>Message Log Email</subject>
. . <size>595</size>

Arguments sessionid session ID

mailbox mailbox name

msgids* message ID (or...)

uids* message user ID (or...)

msgranges* msgid range

Result BAD element

NO element

Index-List element

Table 44 index Command Definition
74

 Commands
. . <from>qa18.example.com Monitor System
<Administrator@qa18.example.com></from>
. . <tolist>
. . . <to>administrator@qa18.example.com</to>
. . . <to>other@example.com</to>
. . </tolist>
. . <deleted/>
. . <seen/>
. </index>
</indexlist>

◆ msgid - message ID

◆ uid - uid of message

◆ date - received date (in YYYYMMDDHHMMSS)

◆ subject - message subject

◆ size - size of message (in bytes)

◆ from - sender of message

◆ tolist - list of To: field recipients

◆ cclist - list of Cc: field recipients

◆ bcclist - list of Bcc: field recipients

◆ deleted - deleted flag

◆ seen - seen flag

◆ flagged - flagged flag

◆ answered - answered flag

◆ draft - draft flag

login Command
The login command performs login and logout operations for a user. Even though
some users might not require a password to login, the password entry must be
present in the URI and contain an empty string or the "Missing password" error
document will be returned.

Possible Errors
<no>System I/O error</no>
<no>Missing user entry</no>
<no>Invalid user</no>
<no>Authentication failed</no>

Table 45 login Command Definition

Operation POST /wm/xml/v1/login.xml

Arguments user User's login name

password User's password

Result NO element

SID element
 75

3
XML Interface to the Mirapoint Message Base
<no>Missing password</no>
<no>Unable to open mailbox</no>
<no>Can't contact LDAP</no>

There is no logout.xml. For logout, you can use login.xml as a GET operation, with
session ID.

Example: Valid Response
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE sid SYSTEM "http://qa150.example.com/dtd/xml/v1/login.dtd">
<sid>41aa01f377bdac9bd5a564fbac741750</sid>

SID Element - Session ID
The SID element returns the session ID after a successful login.

HTTP Redirection On Login
If login action is sent to a host on a multiple server farm, an HTTP redirection can
result via a 302 (Moved Temporarily) HTTP result.

Example
C: POST /wm/xml/v1/login.xml?user=joe&password=cool HTTP/1.1
C: Host: host0
C: Content-Length: 0
C:
S: HTTP/1.1 302 Moved Temporarily
S: Content-Length: 0
S: Location: http://host1/wm/xml/v1/login.xml?sessionid=23432
S:

mailbox Command
The mailbox command performs mailbox add and delete operations on a user's
mailbox.

Possible Errors
<no>System I/O error</no>
<no>Your session has timed out</no>
<bad>Operation is not supported on folder/bad>
<bad>Invalid mailbox name</bad>

Table 46 mailbox Command Definition

Operation POST /wm/xml/v1/mailbox.xml

Arguments sessionid session ID

mailbox mailbox name

op mailbox operation (add | delete)

Result BAD element

OK element

NO element
76

 Commands
<bad>Permission denied</bad>
<no>Folder already exists</no>
<no>Folder not deleted</no>
<no>Folder does not exist</no>
<no>Invalid argument</no>

Examples: Valid Responses
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE ok SYSTEM "http://qa18.example.com/dtd/xml/v1/ok.dtd">
<ok>Folder added</ok>

or

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE ok SYSTEM "http://qa18.example.com/dtd/xml/v1/ok.dtd">
<ok>Folder deleted</ok>

mailboxlist Command
The mailboxlist command returns a user's list of mailboxes. For each mailbox, its
name, number of message, and number of unread messages are returned.

If counts is no or omitted, <unread> and <count> are not transmitted.

Possible errors
<no>System I/O error</no>
<no>Your session has timed out</no>

Example
http://mira/wm/xml/v1/mailboxlist.xml?sessionid=sID&counts=yes
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE mailboxlist SYSTEM "http://qa150.example.com/dtd/xml/v1/

mailboxlist.dtd”>
<mailboxlist>
. <mailbox>
. . <name>Inbox</name>
. . <unread>358</unread>
. . <count>378</count>
. </mailbox>
. <mailbox>
. . <name>attachments</name>
. . <unread>6</unread>
. . <count>6</count>
. </mailbox>
</mailboxlist>

Table 47 mailboxlist Command Definition

Operation GET /wm/xml/v1/mailboxlist.xml

Arguments sessionid session ID

counts sends message and unread counts (yes | no) (optional)

Result NO element

Mailboxlist element
 77

3
XML Interface to the Mirapoint Message Base
Mailboxlist Element
The mailboxlist element returns a list of mailbox names and their attributes.

Possible Errors
<no>System I/O error</no>
<no>Your session has timed out</no>

Example
<mailboxlist>

<mailbox>
. <name>INBOX</name>
. <unread>4</unread>
. <count>100</count>
</mailbox>
<mailbox>
. <name>Draft</name>
. <unread>0</unread>
. <count>3</count>
</mailbox>
<mailbox>
. <name>Sent</name>
. <unread>2</unread>
. <count>34</count>
</mailbox>

</mailboxlist>

◆ name - the name of the mailbox

◆ unread - number of unread messages

◆ count - number of the message in the mailbox

preferences Command (GET)
The preferences get command returns the current state of the user’s mail
preferences.

Possible Errors
<no>System I/O error</no>
<no>Your session has timed out</no>
<no>Unable to open preferences</no>

Example
<?xml version="1.0" encoding="utf-8"?>

Table 48 preferences Command (GET) Definition

Operation GET /wm/xml/v1/prefs.xml

Arguments sessionid session ID

Result BAD element

NO element

Preference element
78

 Commands
<!DOCTYPE preferences SYSTEM "http://qa150.example.com/dtd/xml/v1/
preferences.dtd”>

<preferences>
<fullname>George Harrison</fullname>
<email>george@example.com</email>
<replyto>george@example.com</replyto>
<messagecnt>
. <value>25</value>
. <default>20</default>
</messagecnt>
<composewidth>
. <value>60</value>
. <default>62</default>
</composewidth>
<composeheight>
. <value>20</value>
. <default>15</default>
</composeheight>
<sentfolder>Sent</sentfolder>
<savesent>
. <value>yes</value>
. <default>yes</default>
. <optionlist>
. . <option>no</option>
. . <option>yes</option>
. </optionlist>
</savesent>
<replyopt>
. <value>includeinline</value>
. <default>dontinclude</default>
. <optionlist>
. . <option>dontinclude</option>
. . <option>includeinline</option>
. . <option>includeattach</option>
. </optionlist>
</replyopt>
<signature>This is my signature
</signature>
<includesig>
. <value>no</value>
. <default>no</default>
. <optionlist>
. . <option>no</option>
. . <option>yes</option>
. </optionlist>
</includesig>
<version>
. <value>javascript</value>
. <default>nojavascript</default>
</version>
<timezone>Pacific/Apia</timezone>
<charset>
. <value>utf-8</value>
. <default>utf-8</default>
<optionlist>
<option>EUC-KR</option>
<option>Big5</option>
<option>GB2312</option>
<option>UTF-8</option>
<option>ISO-2022-JP</option>
<option>TIS-620</option>
</optionlist>
</charset>
<draftfolder>Draft</draftfolder>
 79

3
XML Interface to the Mirapoint Message Base
<junkfolder>Junk Folder</junkfolder>
<trashfolder>Trash</trashfolder>
<usetrash>
<value>yes</value>
<default>no</default>
<optionlist>
<option>no</option>
<option>yes</option>
</optionlist>
</usetrash>

</preferences>

preferences Command (POST)
The preferences post command sets the specified values for a user's mail
preferences. Only the specified values are set by the action.

Table 49 preferences Command (POST) Definition

Operation POST /wm/xml/v1/prefs.xml

Arguments sessionid session ID

fullname+ user’s full name

email+ user’s email address

reply-to+ reply-to value

header+ number of messages to display in WebMail TOC

composewidth+ width, in characters, of the Compose message field

composeheight+ height, in lines, of the Compose message field

sentfolder+ Sent folder name

replyopt+ default replying option for WebMail

signature+ signature for outgoing mail

includesig+ default compose option for including signature

version+ UI version of WebMail

timezone+ user’s timezone

charset+ default outgoing message charset

draftfolder+ name of the draft folder

junkfolder+ name of the junk mail folder

trashfolder+ name of the trash mail folder

usetrash+ deleted messages are moved to trashfolder

Result BAD element

NO element

OK element
80

 Commands
Possible Errors
<no>System I/O error</no>
<no>Your session has timed out</no>
<no>Preferences could not be saved</no>
<no>Unable to open preferences</no>
<bad>Folder already exists</bad>
<bad>Folder name too long.</bad>
<bad>Invalid fullname value</bad>
<bad>Invalid email value</bad>
<bad>Invalid reply-to value</bad>
<bad>Invalid messagecnt value</bad>
<bad>Invalid composewidth value</bad>
<bad>Invalid composeheight value</bad>
<bad>Invalid sentfolder value</bad>
<bad>Invalid savesent value</bad>
<bad>Invalid replyopt value</bad>
<bad>Invalid signature value</bad>
<bad>Invalid includesig value</bad>
<bad>Invalid version value</bad>
<bad>Invalid timezone value</bad>
<bad>Invalid charset value</bad>
<bad>Invalid draftfolder value</bad>
<bad>Invalid junkfolder value</bad>
<bad>Invalid trashfolder value</bad>
<bad>Invalid usetrash value</bad>

Example of Valid Operation
<?xml version="1.0"?>
<!DOCTYPE ok SYSTEM "http://qa150.example.com/dtd/xml/v1/ok.dtd">
<ok>Preferences saved</ok>

RFC822 Command
The rfc822 command returns the raw RFC822 message contents of a message.
Because the RFC822 contents is of type text/plain, the result of this command is not
an XML document, but a plain text document.

Possible Errors
<no>System I/O error</no>
<no>Your session has timed out</no>
<bad>Folder does not exist</bad>

Table 50 RFC822 Command Definition

Operation GET /wm/xml/v1/rfc822.txt

Arguments sessionid session ID

mailbox mailbox name

msgid message ID (or...)

uid message user ID

Result BAD element

NO element

RFC822 element
 81

3
XML Interface to the Mirapoint Message Base
<bad>Invalid unique message id</bad>
<bad>Invalid message id</bad>
<bad>Missing uid or msgid value</bad>

Example
Return-Path: <Administrator@qa18.example.com>
Received: (from Administrator@localhost)
by qa18.example.com (Mirapoint)
id AAA00001;
Tue, 17 Jul 2001 14:12:52 GMT
Date: Tue, 17 Jul 2001 14:12:52 GMT
Message-Id: <200107171412.AAA00001@qa18.example.com>
From: "qa18.example.com Monitor System" <Administrator@qa18.example.com>
Subject: ALERT! qa18.example.com (00902773acea)
To: administrator@qa18.example.com

Version 3.0.0.17004-gberthet-1-200106191822

The following conditions are outstanding:
SYSTEM.SMTPL: SMTP service is not running
Contact information: ...
---End of Example---

search Command
The search command returns an index list of messages that match a search query.

Table 51 search Command Definition

Operation GET /wm/xml/v1/search.xml

Arguments sessionid session ID

mailbox mailbox name

fromsearch+ search in from field

subjectsearch+ search in subject field

toccsearch+ search in to/cc field

bodysearch+ search in body field

largersearch+ match message larger than value in kilobytes

smallersearch+ match message smaller than value in kilobytes

unreadsearch search unread only (on)

msgids* search in message ID (or...)

uids* search in message uid (or...)

msgranges* search in msgid range

Result BAD element

NO element

Index-List element
82

 Commands
Possible Errors
<no>System I/O error</no>
<no>Your session has timed out</no>
<bad>Invalid mailbox name</bad>
<bad>Invalid unique message id</bad>
<bad>Invalid message id</bad>
<bad>Invalid message range</bad>

Example: When No Messages Match Search Criteria
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE indexlist SYSTEM "http://qa150.example.com/dtd/xml/v1/

indexlist.dtd”>
<indexlist>
</indexlist>

setflags Command
The setflags command sets the flags for a given set of messages. The flags that can
be set are the seen and deleted flags.

Possible Errors
<no>System I/O error</no>
<no>Your session has timed out</no>
<bad>Invalid operation</bad>
<bad>Invalid mailbox name</bad>
<bad>Invalid unique message id</bad>
<bad>Invalid message id</bad>
<bad>Invalid message range</bad>
<bad>Folder does not exist</bad>

Example: Valid Response
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE ok SYSTEM "http://qa18.example.com/dtd/xml/v1/ok.dtd">
<ok>Successfully set message flags</ok>

Table 52 setflags Command Definition

Operation POST /wm/xml/v1/setflags.xml

Arguments sessionid session ID

mailbox mailbox name

op operation (read } unread | delete | undelete)

msgids* message ID (or...)

uids* message user ID (or...)

msgranges* message ID range

Result BAD element

OK element

NO element
 83

3
XML Interface to the Mirapoint Message Base
status Command
The status command returns the same mailbox information as the mailbox list
command, but only for the specified mailbox. Instead of returning a mailbox list
element, a single mailbox element is returned.

Possible Errors
<no>System I/O error</no>
<no>Your session has timed out</no>
<bad>Invalid mailbox name</bad>

Example
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE status SYSTEM "http://qa18.example.com/dtd/xml/v1/status.dtd">

<status>
. <mailbox>
. . <name>inbox</name>
. . <unread>178</unread>
. . <count>178</count>
. . <quota_used>579550504667942688<quota_used>
. . <quota_limit>584047382535077888<quota_limit>
. </mailbox>
</status>

Status Element
The status element returns a single mailbox name and its attributes.

◆ name - name of the mailbox

◆ unread - number of unread messages

◆ count - number of the message in the mailbox

◆ quota_used - quota (in bytes) used up by the user.

◆ quota_limit - quota (in bytes) assigned to the user.

transfer Command
The transfer command moves or copies message from a source mailbox to a
destination mailbox. When the move operation is specified, the messages in the

Table 53 status Command Definition

Operation GET /wm/xml/v1/status.xml

Arguments sessionid session ID

mailbox mailbox name

Result BAD element

NO element

Mailboxlist element
84

 Commands
source mailbox have the deleted flags set, and are not removed until the expunge
action is executed.

Possible Errors
<no>System I/O error</no>
<no>Your session has timed out</no>
<bad>Folder does not exist</bad>
<bad>Invalid unique message id</bad>
<bad>Invalid message id</bad>
<bad>Invalid message range</bad>

Example
<?xml version="1.0"?>
<!DOCTYPE ok SYSTEM "http://qa150.example.com/dtd/xml/v1/ok.dtd">
<ok>Transfer succeeded</ok>

Table 54 transfer Command Definition

Operation POST /wm/xml/v1/transfer.xml

Arguments sessionid session ID

mailbox mailbox name

dstmbox destination mailbox name

msgids* message ID (or...)

uids* message uid (or...)

msgranges* msgid range

op mailbox operation (move | copy)

Result BAD element

OK element

NO element
 85

3
XML Interface to the Mirapoint Message Base
86

4

XML Interface to the WebMail Address Book
The Mirapoint XML interface to the WebMail Address Book lets customers write
their own address book user-interface applications, and is helpful when developing
synchronization tools, such as Mirapoint’s SynQ add-in for Microsoft Outlook.

The interface provides functions to:

◆ Retrieve contacts and groups from the address book, using criteria such as uids,
range of indexes, categories, and so on

◆ Get the list of categories

◆ Create new contacts and new groups

◆ Delete existing contacts and groups

◆ Import or export address books in LDIF format

◆ Search the address book

The XML address book operations are described in “Commands” on page 88.

Command Parameters
In the description of the XML operations, these parameters are common:

sid

Session ID obtained after a successful login operation.

ref

The ID of the contact on which the operation is performed. For operations that
return lists of objects, there might be several occurrences of this parameter. The
value corresponds to the contact's unique ID (uuid).

group/category

Contacts are referred to using their uuid. For groups and categories, it is enough
to use the name. This parameter is used either to operate on a given group or
category, or to restrict the retrieval of contacts.

letter

Similar to group or category, letter can be used to restrict the retrieval to
contacts that begin with a given letter. It can be used with category or group.
87

4
XML Interface to the WebMail Address Book
offset/count

Instead of using multiple instances of ref parameters, a set of objects on which
an operation is performed can be specified as a range of contact indexes. This is
valid when accessing a sorted list of contacts in a category (including the "all"
category), in a group, or in a set of contacts starting with the same letter. The
parameter offset contains the first index, it defaults to the first record available
in the given set. It is an error if the offset is out of bounds. The parameter count
contains the maximum count of records to be returned. These parameters are
optional but if supplied, must be both supplied. count can be set to * to denote
all the available contacts starting at index offset.

The special value * can be used for parameters that can be multiple, such as ref,
group, or category. It denotes all the existing elements (all contacts, all groups, all
categories).

Some other parameters, like charset or language, accept enumerated values
depending on the system configuration. To know exactly which values are available
for a given parameter, use the XML operation prefs.

Commands
An address book XML operation has the same meaning and result whether
accessed with a POST or GET method, except for the import operation for which
one of the parameters is a file.

An operation either completely succeeds or completely fails. For instance, when
deleting a list of contacts, the deletion occurs only if all the given IDs are valid.
When modifying a contact, the contact is modified only if each value supplied is
valid for the given field.

The following descriptions indicate if each parameter is single or multiple and
mandatory or optional. Optional parameters are usually single. If the operation
name is plural, such as get_contacts, del_groups, the operation can accept a
multiple ref or group parameter. If the operation name is singular, such as
add_contact or mod_group, the parameter is mandatory and single. Add operations
can accept a wildcard parameter (such as ref=*) but delete operations cannot.

The sessionid parameter sid is always mandatory and single.

category Commands
This section describes the category commands get_categories, add_category,
mod_category, del_categories, and get_letter_categories, followed by the category
DTD.

get_categories Command
The get_categories command returns the list of categories.

Table 55 get_categories Command Definition

Operation GET|POST /cgi-bin/addrbook.cgi/xab/v1/get_categories.xml
88

 Commands
Result

The categories element is returned with the description of the existing categories.

add_category Command
The add_category command creates a new category.

Result

A category element is returned if the category was successfully created. If not, a
status element is returned to indicate the failure of the request.

mod_category Command
The mod_category command modifies an existing category. A modification is either
a change of name, the addition of a contact to a category (in which case the contact
is removed from its current category) or the removal of a contact (which is
equivalent to the addition to the unfiled category). The unfiled category cannot be
renamed.

Result

A category element is returned if the category was successfully modified. If not, a
status element is returned to indicate the failure of the request.

Arguments sid session ID (required)

category category name (multiple)

Table 56 add_category Command Definition

Operation GET|POST /cgi-bin/addrbook.cgi/xab/v1/add_category.xml

Arguments sid session ID (required)

category name of the category to create (required)

Table 57 mod_category Command Definition

Operation GET|POST /cgi-bin/addrbook.cgi/xab/v1/mod_category.xml

Arguments sid session ID (required)

category name of the category to rename (required)

modtype rename, add, or remove (required)

newname new name of the category

ref contact ID (multiple)

Table 55 get_categories Command Definition
 89

4
XML Interface to the WebMail Address Book
del_categories Command
The del_categories command deletes one or more categories. It is an error to delete
the unfiled category, in which case no category at all is deleted. Using * as the value
of category will delete all categories except Unfiled.

Result

A status element is returned to indicate the success or failure of the request.

get_letter_categories Command
The get_letter_categories command lets a user know which letters have contacts in
the address book, and how many contacts. It can be restricted to a given category.

The first letter in a contact name is the first character in the string composed by the
last name, first name, nickname and email address, in this order.

The term letter encloses "A" to "Z" (same as "a" to "z"), "0" to "1" (for the ten
digits), and eventually other characters.

Result

A letters element is returned with the list of letters and their contact counts.

contact Commands
This section describes the contact commands get_contacts, add_contact,
mod_contact, and del_contacts, followed by the contact DTD.

get_contacts Command
The get_contacts command returns a list of contacts.

Table 58 del_categories Command Definition

Operation GET|POST /cgi-bin/addrbook.cgi/xab/v1/del_categories.xml

Arguments sid session ID (required)

category name of the category to delete (multiple)

Table 59 get_letter_categories Command Definition

Operation GET|POST /cgi-bin/addrbook.cgi/xab/v1/
get_letter_categories.xml

Arguments sid session ID (required)

category count only contacts in this category (optional)

Table 60 get_contacts Command Definition

Operation GET|POST /cgi-bin/addrbook.cgi/xab/v1/get_contacts.xml
90

 Commands
Result

The list of contacts is returned into a persons element. In case of failure, the reason
is given with a status element. The contacts can be selected using their unique ID,
supplied with the parameters ref, and/or with the group and/or the category they
belong to and/or with their first letter. The selection can further be restricted using
the two parameters offset and count.

The lastmodtime parameter is used to retrieve only the contacts that were modified
after a given date. The format of this parameter is:
YearMonthDayTHourMinutesSecondsZ (format: %Y%m%dT%H%M%SZ).

Depending on the value of detail, which defaults to full, a limited set of field
values is returned per contact, enough to get a contact's summary and to use this
command again to retrieve all the fields (with detail unset or set to full) using the
same operation, if needed. If the value is partial and lastmodtime was supplied,
only the fields that were modified are returned.

For the category element, the index of the contact's category is given. If the contact
belongs to the Unfiled category, the attribute unfiled is present.

The element that contains the primary phone number contains the attribute
primary. The element primaryphone contains the name of the field that holds the
primary phone number.

If showdeleted is supplied with the value true, the uuids of contacts that were
deleted (eventually since lastmodtime only) are returned using deleted-person
elements. The first time it is used, it also notifies the address book to start tracking
the deleted contacts.

<persons count="1">
<person ref="123-2344-34455">
. <category unfiled="yes">3</category>
. <cn>Joe T. User</cn>
. <surname>User</surname>
. <givenname>Joe</givenname>
. <displayname>Joe User</displayname>

Arguments sid session ID (required)

ref contact ID (multiple)

group group name (optional)

category category name (optional)

letter contact’s name first letter (optional)

offset first contact index (optional)

count maximum count (optional)

lastmodtime last modification time (optional)

detail full or partial (optional; default is full)

showdeleted true or false (optional)

Table 60 get_contacts Command Definition
 91

4
XML Interface to the WebMail Address Book
. <mail>juser@example.com</mail>

. <telephonenumber primary="yes">+1 408.720.9999</teleph

. <primaryphone>telephonenumber</primaryphone>
</person>

</persons>

add_contact Command
The add_contact command creates a new contact. The field names are the name of
the elements that a person element can contain (see the contact DTD in Appendix
A, Mirapoint DTDs”). They are all optional but at least one of surname,
givenname, nickname, and mail must have a non-empty value. If the contact
conflicts with an entry in the address book, the value of conflict indicates how to
resolve the conflict, either by generating an error (using the status element),
replacing the existing entry, or creating a duplicate entry (and ignoring the conflict).

Result

If the contact was successfully created, the corresponding person element is
returned. If not, a status element indicates the failure.

mod_contact
The mod_contact command modifies an existing contact. A new value for a field is
given using the field name as a parameter. The field names are the name of the
elements that a person element can contain (see the contact DTD in Appendix A,
Mirapoint DTDs”).

Result

If the contact was successfully modified, the corresponding person element is
returned. If not, a status element is returned.

<person ref="123-2344-34455">
<category>2</category>
<cn>Joe T. User</cn>
<surname>user</surname>
<givenname>Joe</givenname>

Table 61 add_contact Command Definition

Operation GET|POST /cgi-bin/addrbook.cgi/xab/v1/add_contact.xml

Arguments sid session ID (required)

fieldname field value

conflict discard, error, replace, or ignore (default)

Table 62 mod_contact Command Definition

Operation GET|POST /cgi-bin/addrbook.cgi/xab/v1/mod_contact.xml

Arguments sid session ID (required)

ref contact ID (required)

fieldname field value
92

 Commands
<displayname>Joe User</displayname>
<mail>juser@example.com</mail>
<telephonenumber primary>+1 408.720.9999</telephonenumbe
<primaryphone>telephonenumber</primaryphone>

</person>

del_contacts Command
The del_contacts command deletes one or more contacts. An optional category can
be supplied to restrict the deletion to contacts that belong to this category.

Result

A status element indicates the result of the operation.

group Commands
This section describes the group commands get_groups, add_group, mod_group,
and del_groups, followed by the group DTD.

get_groups Command
The get_groups command returns a list of groups. The members of a group are
given in the output of this operation but can also be retrieved using get_contacts
on page 90.

Result

The list of groups is returned as a groupsofnames element. An error in the
operation is signified with a status element.

add_group Command
The add_group command creates a new group.

Table 63 del_contacts Command Definition

Operation GET|POST /cgi-bin/addrbook.cgi/xab/v1/del_contacts.xml

Arguments sid session ID (required)

ref contact ID (multiple)

category category restricting deletion (optional)

Table 64 get_groups Command Definition

Operation GET|POST /cgi-bin/addrbook.cgi/xab/v1/get_groups.xml

Arguments sid session ID (required)

group group name (multiple)

Table 65 add_group Command Definition

Operation GET|POST /cgi-bin/addrbook.cgi/xab/v1/add_group.xml
 93

4
XML Interface to the WebMail Address Book
Result

A groupofnames element is returned if the group has been successfully created. In
case of failure, the reason is given in a status element.

mod_group Command
The mod_group command modifies an existing group. The type of modification can
be:

◆ rename to rename the group

◆ add to add members

◆ remove to remove members

One command performs only one type of modification. For add or remove, there
must be at least one ref. For remove, it can be *.

Result

If the group was successfully modified, the corresponding groupofnames element is
returned. A status element is returned to indicate the failure of the request.

del_groups Command
The del_groups command deletes one or more groups.

Arguments sid session ID (required)

group group name (required)

Table 66 mod_group Command Definition

Operation GET|POST /cgi-bin/addrbook.cgi/xab/v1/mod_group.xml

Arguments sid session ID (required)

group current group name (required)

modtype rename, add, or remove (required)

newname new name of the group

ref contact ID (multiple)

Table 67 del_groups Command Definition

Operation GET|POST /cgi-bin/addrbook.cgi/xab/v1/del_groups.xml

Arguments sid session ID (required)

group group name (multiple)

Table 65 add_group Command Definition
94

 Commands
Result

A status element is returned to indicate the success or failure of the request.

import/export Commands
This section describes the export and import commands.

export Command
The export command exports the address book, or part of it, in LDIF or CSV
format, either as an XML document or as raw data with corresponding HTTP
headers.

Result

The xml format is:

<export file="addrbook.ldif">
... raw data in <![CDATA[-]]> section ...

</export>

The LDIF and CSV formats are:

Content-Type: x-application/octet-stream; name=addrbook.ld
Content-Disposition: inline; filename=addrbook.ldif
Content-Length: 1234

... raw data ...

import Command
The import command imports the contents of an LDIF or CSV file into the address
book. Conflicts can be:

◆ ignore—contacts are created and groups are replaced

◆ discard—new conflicting records are ignored

Table 68 export Command Definition

Operation GET|POST /cgi-bin/addrbook.cgi/xab/v1/export.xml
GET|POST /cgi-bin/addrbook.cgi/xab/v1/export.ldif
GET|POST /cgi-bin/addrbook.cgi/xab/v1/export.csv

Arguments sid session ID (required)

format ldif or csv (required only for export.xml)

charset character set of the file (defaults to UTF-8)

language language of the CSV file (default depends on locale)

category export only the contents of one category (defaults to all)

cdata if true (default), export as a CDATA section in an XML
document; if false, export as a plan LDIF or CSV file
 95

4
XML Interface to the WebMail Address Book
◆ replace—existing conflicting contacts and/or groups are deleted and the new
records are created

Result

The import element indicates the number of records found in the file and the
number of contacts and groups actually created.

<import file="mirapoint.ldif">
<recordcount>1004</recordcount>
<personcount>1000</personcount>
<groupcount>4</groupcount>

</import>

preferences Command
This section describes the preferences command.

prefs Command
The prefs command lets an automatic application query the XML interface for the
list of accepted values for a given parameter in the XML operations previously
described. The value used as a default, if any, can also be indicated.

If option is not supplied, all the parameters are described. If supplied, it can have
these values:

charset

The list of character sets that the application recognizes. The default is UTF-8.

language

Table 69 import Command Definition

Operation POST /cgi-bin/addrbook.cgi/xab/v1/import.xml

Arguments sid session ID (required)

format ldif or csv (required)

file data to import (required)

charset character set of the file (defaults to UTF-8)

language language of the CSV file

category category the file is imported into (defaults to unfiled)

conflict discard, error, replace, or ignore (default)

Table 70 prefs Command Definition

Operation GET|POST /cgi-bin/addrbook.cgi/xab/v1/prefs.xml

Arguments sid session ID (required)

option option name (optional, multiple)
96

 Commands
The application know how to import CSV files produced by localized versions
of Outlook for these languages.

format

The format of address book export: currently LDIF and CSV.

fieldname

The names of contact's fields.

conflict

The accepted values for this parameter.

detail

The accepted values for this parameter.

modtype

The accepted values for this parameter.

primaryphone

The accepted values for this parameter and for the corresponding contact field.

Result
<preferences>

<charset>
. <default>utf-8</default>
. <optionlist>
. . <option>big5</option>
. . <option>iso-8859-1</option>
. . <option>shift_jis</option>
. . <option>us-ascii</option>
. . <option>euc-jp</option>
. . <option>euc-kr</option>
. . <option>gb2312</option>
. . <option>iso-2022-jp</option>
. . <option>iso-2022-kr</option>
. . <option>utf-8</option>
. </optionlist>
</charset>

</preferences>

search Command
This section describes the search command.

search Command
The search command searches the address book for contacts whose fields match
given patterns.

The search can also apply to groups, to find groups with a given name or containing
a specific member. memberref is the only parameter that is not a pattern: if supplied,
it must contain the exact uuid of a contact.
 97

4
XML Interface to the WebMail Address Book
The contacts returned match all the supplied patterns, like a logical AND. Same
with the groups if grouppattern and memberref are both supplied.

Result

The search results are returned inside a searchresult element that contains a
search element that lists the patterns that were supplied for the search, a list of
person elements, for each matching contact, inside an optional persons element
and zero or more groupofnames elements, for each matching group inside an
optional groupsofnames element.

If the parameter detail has the value partial (which is its default), contacts are
returned with a limited set of fields (enough to display a contact summary and
access the remaining fields with get_contacts).

version Command
This section describes the version command.

version Command
The version command lets a client query for the server’s MOS and XML versions.
The command does not take any argument, and does not require a valid session ID.

Result
<version>

<interface>XML version</interface>
<mos>MOS version</mos>

</version>

Table 71 search Command Definition

Operation GET|POST /cgi-bin/addrbook.cgi/xab/v1/search.xml

Arguments sid session ID (required)

namepattern pattern for all the name fields

phonepattern pattern for all the phone number fields

addresspattern pattern for all the address fields

otherpattern pattern for all other fields

grouppattern pattern for group names

memberref contact ID for group search

fieldnamepattern pattern for the fieldname field

detail full or partial (optional)

Table 72 version Command Definition

Operation GET|POST /cgi-bin/addrbook.cgi/xab/v1/version.xml

Arguments none
98

A

Mirapoint DTDs
This appendix contains the DTD for each XML API in this manual.

Status DTD
The status DTD is used for replies that need to indicate success or failure, only.
Each XML subsystem has a different status DTD. See below for details.

WebCal Group Calendar DTD
WebCal Group Calendar has twelve DTDs, each presented in a section below.

calendar.dtd
<!ELEMENT calendar (no | bad | (ok, (event | todo)*))>

<!ELEMENT event (eventid, globalid, clientid?, eventtitle, eventdesc?,
 eventstart, eventstop, viewablestart, viewablestop,
 allday?, eventpriority, eventemaildiff, eventpagerdiff,
 eventnotifylist?, eventrrule?, eventxdata?, created, dtstamp,
 last-modified, sequence, status?, x-mira-sendmail?,
 x-mira-readonly?, attach*, attendees?, extattendees?,
 resources?, perms*, exceptions?, timezoneoffset?, timezone?)>

<!ELEMENT eventid (#PCDATA)>
<!ELEMENT globalid (#PCDATA)>
<!ELEMENT clientid (#PCDATA)>
<!ELEMENT eventtitle (#PCDATA)>
<!ELEMENT eventdesc (#PCDATA)>
<!ELEMENT eventstart (#PCDATA)>
<!ELEMENT eventstop (#PCDATA)>
<!ELEMENT viewablestart (#PCDATA)>
<!ELEMENT viewablestop (#PCDATA)>
<!ELEMENT allday EMPTY>
<!ELEMENT eventpriority (#PCDATA)>
<!ELEMENT eventemaildiff (#PCDATA)>
<!ELEMENT eventpagerdiff (#PCDATA)>
<!ELEMENT eventnotifylist (eventnotifyelement*)>
<!ELEMENT eventrrule (#PCDATA)>
<!ELEMENT eventxdata (#PCDATA)>
<!ELEMENT attendees (attendee*)>
<!ELEMENT extattendees (extattendee*)>
<!ELEMENT resources (resource*)>
<!ELEMENT created (#PCDATA)>
<!ELEMENT dtstamp (#PCDATA)>
<!ELEMENT last-modified (#PCDATA)>
99

A
Mirapoint DTDs
<!ELEMENT sequence (#PCDATA)>
<!ELEMENT status (#PCDATA)>
<!ELEMENT x-mira-sendmail EMPTY>
<!ELEMENT x-mira-deleted EMPTY>
<!ELEMENT x-mira-readonly EMPTY>
<!ELEMENT attach (extref)>
 <!ATTLIST attach name CDATA #REQUIRED>

<!ELEMENT eventnotifyelement (#PCDATA)>

<!ELEMENT attendee (#PCDATA)>
 <!ATTLIST attendee role CDATA #REQUIRED>
 <!ATTLIST attendee partstat CDATA #REQUIRED>

<!ELEMENT extattendee (#PCDATA)>
 <!ATTLIST extattendee partstat CDATA #REQUIRED>

<!ELEMENT resource (#PCDATA)>
 <!ATTLIST resource partstat CDATA #REQUIRED>

<!ELEMENT extref EMPTY>
 <!ATTLIST extref uri CDATA #REQUIRED>

<!ELEMENT todo (todoid, todotitle, tododesc?, todopriority,
 todoxdata?, created, dtstamp, last-modified, sequence,
 x-mira-readonly?, due?, completed?)>

<!ELEMENT todoid (#PCDATA)>
<!ELEMENT todotitle (#PCDATA)>
<!ELEMENT tododesc (#PCDATA)>
<!ELEMENT todopriority (#PCDATA)>
<!ELEMENT todoxdata (#PCDATA)>
<!ELEMENT due (#PCDATA)>
<!ELEMENT completed (#PCDATA)>

<!ELEMENT perms (permuser*)>
 <!ATTLIST perms scope CDATA #REQUIRED>
 <!ATTLIST perms type CDATA #REQUIRED>

<!ELEMENT permuser (#PCDATA)>

<!ELEMENT exceptions (exception+)>

<!ELEMENT exception (#PCDATA)>
 <!ATTLIST exception deleted (true | false) #IMPLIED>

<!ELEMENT eventlocation (#PCDATA)>

<!ELEMENT timezoneoffset (#PCDATA)>

<!ELEMENT timezone (#PCDATA)>

<!ELEMENT sequence-init (#PCDATA)>

<!ELEMENT client-lastmodified (#PCDATA)>

<!ELEMENT replytime (#PCDATA)>

<!ELEMENT master-clientid (#PCDATA)>

<!ELEMENT metadata (#PCDATA)>
 <!ATTLIST metadata name CDATA #REQUIRED>
 <!ATTLIST metadata value CDATA #REQUIRED>
100

 WebCal Group Calendar DTD
<!ELEMENT ok (#PCDATA)>
<!ELEMENT no (#PCDATA)>
<!ELEMENT bad (#PCDATA)>

changes.dtd
<!ELEMENT changes (no | bad |
 (ok, changedevent*, changedtodo*))>

<!ELEMENT changedevent (eventid, created, dtstamp,
 last-modified, sequence, x-mira-deleted?)>

<!ELEMENT changedtodo (todoid, created, dtstamp,
 last-modified, sequence, x-mira-deleted?)>

<!ELEMENT eventid (#PCDATA)>
<!ELEMENT todoid (#PCDATA)>
<!ELEMENT created (#PCDATA)>
<!ELEMENT dtstamp (#PCDATA)>
<!ELEMENT last-modified (#PCDATA)>
<!ELEMENT sequence (#PCDATA)>
<!ELEMENT x-mira-deleted EMPTY>

<!ELEMENT ok (#PCDATA)>
<!ELEMENT no (#PCDATA)>
<!ELEMENT bad (#PCDATA)>

freebusy.dtd
<!ELEMENT freebusyreply (no | bad | (ok, vfreebusy))>

<!ELEMENT vfreebusy (dtstamp, dtstart, dtend, freebusy*)>

<!ELEMENT dtstamp (#PCDATA)>
<!ELEMENT dtstart (#PCDATA)>
<!ELEMENT dtend (#PCDATA)>
<!ELEMENT freebusy (#PCDATA)>

<!ELEMENT ok (#PCDATA)>
<!ELEMENT no (#PCDATA)>
<!ELEMENT bad (#PCDATA)>

localelist.dtd
<!ELEMENT localelist (locale+)>

<!ELEMENT locale (default?, name, language)>
<!ELEMENT default EMPTY>
<!ELEMENT name (#PCDATA)>
<!ELEMENT language (#PCDATA)>

login.dtd
<!ELEMENT login (no | bad | (ok, sid, time, dumpcal?, emaillist))>

<!ELEMENT sid (#PCDATA)>
<!ELEMENT time (#PCDATA)>
<!ELEMENT dumpcal (#PCDATA)>
<!ELEMENT emaillist (email*)>
<!ELEMENT email (#PCDATA)>
 <!ATTLIST email type CDATA #IMPLIED>
 101

A
Mirapoint DTDs
<!ELEMENT ok (#PCDATA)>
<!ELEMENT no (#PCDATA)>
<!ELEMENT bad (#PCDATA)>

permissions.dtd
<!ELEMENT permissions (no | (ok, (perms+)))>

<!ELEMENT perms (permuser*)>
 <!ATTLIST perms scope CDATA #REQUIRED>
 <!ATTLIST perms type (INCLUDE | PUBLIC) "INCLUDE">

<!ELEMENT permuser (#PCDATA)>

<!ELEMENT ok (#PCDATA)>
<!ELEMENT no (#PCDATA)>

preferences.dtd
<!ELEMENT preferences (no | bad |
 (ok, fullname, emaildiff, pagerdiff,
 emailsummarytime, emailsummarytype, pagersummarytime,
 pagersummarytype, weeklysummarytime, weeklysummaryday,
 monthlysummarytime, monthlysummaryday,
 emailaddr, pageraddr, dfltview,
 daystart, dayend, daygranularity, weekdaysep,
 showeventtxt, showtodolist, weekstart, version,
 timezone, published))>

<!ELEMENT fullname (#PCDATA)>
<!ELEMENT emaildiff (#PCDATA)>
<!ELEMENT pagerdiff (#PCDATA)>
<!ELEMENT emailsummarytime (#PCDATA)>
<!ELEMENT emailsummarytype (#PCDATA)>
<!ELEMENT pagersummarytime (#PCDATA)>
<!ELEMENT pagersummarytype (#PCDATA)>
<!ELEMENT weeklysummarytime (#PCDATA)>
<!ELEMENT weeklysummaryday (#PCDATA)>
<!ELEMENT monthlysummarytime (#PCDATA)>
<!ELEMENT monthlysummaryday (#PCDATA)>
<!ELEMENT emailaddr (#PCDATA)>
<!ELEMENT pageraddr (#PCDATA)>
<!ELEMENT dfltview (#PCDATA)>
<!ELEMENT daystart (#PCDATA)>
<!ELEMENT dayend (#PCDATA)>
<!ELEMENT daygranularity (#PCDATA)>
<!ELEMENT weekdaysep (#PCDATA)>
<!ELEMENT showeventtxt (#PCDATA)>
<!ELEMENT showtodolist (#PCDATA)>
<!ELEMENT weekstart (#PCDATA)>
<!ELEMENT version (#PCDATA)>
<!ELEMENT timezone (#PCDATA)>
<!ELEMENT published (#PCDATA)>

<!ELEMENT ok (#PCDATA)>
<!ELEMENT no (#PCDATA)>
<!ELEMENT bad (#PCDATA)>

status.dtd
<!ELEMENT status (ok | no | bad)>
102

 WebCal Group Calendar DTD
<!ELEMENT ok (#PCDATA)>
<!ELEMENT no (#PCDATA)>
<!ELEMENT bad (#PCDATA)>

update.dtd
<!ELEMENT update (no | bad | (ok, gid, last-modified, (event | todo)))>

<!ELEMENT event (eventid, globalid, clientid?, eventtitle, eventdesc?,
 eventstart, eventstop, viewablestart, viewablestop,
 allday?, eventpriority, eventemaildiff,
 eventpagerdiff, eventnotifylist?, eventrrule?,
 eventxdata?, created, dtstamp, last-modified, sequence,
 status?, x-mira-sendmail?, x-mira-readonly?, attach*,
 attendees?, extattendees?, resources?, perms*, exceptions?,
 timezoneoffset?, timezone?)>

<!ELEMENT todo (todoid, todotitle, tododesc?, todopriority,
 todoxdata?, created, dtstamp, last-modified, sequence,
 x-mira-readonly?, due?, completed?)>

<!ELEMENT gid (#PCDATA)>
<!ELEMENT last-modified (#PCDATA)>

<!ELEMENT ok (#PCDATA)>
<!ELEMENT no (#PCDATA)>
<!ELEMENT bad (#PCDATA)>

userlist.dtd
<!ELEMENT userlist (no | bad | (ok, users*))>

<!ELEMENT users (user*)>
<!ELEMENT user (#PCDATA)>
 <!ATTLIST user userid CDATA #REQUIRED>

<!ELEMENT ok (#PCDATA)>
<!ELEMENT no (#PCDATA)>
<!ELEMENT bad (#PCDATA)>

version.dtd
<!ELEMENT version (interface,mos,synq?)>

<!ELEMENT interface (#PCDATA)>
<!ELEMENT mos (#PCDATA)>
<!ELEMENT synq (#PCDATA)>

viewother.dtd
<!ELEMENT viewother (no | bad |
 (ok, sid, x-mira-readonly?, dumpcal?, emaillist))>

<!ELEMENT sid (#PCDATA)>
<!ELEMENT x-mira-readonly EMPTY>
<!ELEMENT dumpcal (#PCDATA)>
<!ELEMENT emaillist (email*)>
<!ELEMENT email (#PCDATA)>
 <!ATTLIST email type CDATA #IMPLIED>

<!ELEMENT ok (#PCDATA)>
 103

A
Mirapoint DTDs
<!ELEMENT no (#PCDATA)>
<!ELEMENT bad (#PCDATA)>

Mirapoint Message Base DTDs
WebMail and message store have twelve DTDs, each presented in a section below.

bad.dtd
<!ELEMENT bad (#PCDATA)>

body.dtd
<!ELEMENT body (bodypart*)>
<!ELEMENT bodypart (#PCDATA)>
<!ATTLIST bodypart
 xmlns:xlink CDATA #FIXED "http://www.w3.org/1999/xlink"
 xlink:href CDATA #REQUIRED
 xlink:type CDATA #IMPLIED >

bodystructure.dtd
<!ELEMENT bodystructure (bodystructure)>
 <!ELEMENT bodystructure (structure)>
 <!ELEMENT structure (#PCDATA)>

imap_genlist.dtd
<!ELEMENT mailboxlist (mailbox+)>
 <!ELEMENT mailbox (name, unread?, count?)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT unread (#PCDATA)>
 <!ELEMENT count (#PCDATA)>

indexlist.dtd
<!ELEMENT indexlist (index*)>
<!ELEMENT index (msgid, uid, date, subject?, size, priority,
 deleted?, attachment?, seen?, flagged?, answered?, draft?,
 from?, tolist?, cclist?, bcclist?)>
<!ELEMENT msgid (#PCDATA)>
<!ELEMENT uid (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT size (#PCDATA)>
<!ELEMENT priority (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT tolist (to*)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT cclist (cc*)>
<!ELEMENT cc (#PCDATA)>
<!ELEMENT bcclist (bcc*)>
<!ELEMENT bcc (#PCDATA)>
<!ELEMENT deleted EMPTY>
<!ELEMENT attachment EMPTY>
<!ELEMENT seen EMPTY>
<!ELEMENT flagged EMPTY>
<!ELEMENT answered EMPTY>
<!ELEMENT draft EMPTY>
104

 Mirapoint Message Base DTDs
login.dtd
<!ELEMENT sid (#PCDATA)>

mailboxlist.dtd
<!ELEMENT mailboxlist (mailbox+)>
 <!ELEMENT mailbox (name, unread, count)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT unread (#PCDATA)>
 <!ELEMENT count (#PCDATA)>

no.dtd
<!ELEMENT no (#PCDATA)>

ok.dtd
<!ELEMENT ok (#PCDATA)>

preferences.dtd
<!ELEMENT preferences (fullname, email, replyto,
 messagecnt, composewidth, composeheight,
 sentfolder, savesent, replyopt, signature,
 includesig, version, timezone, charset,
 draftfolder, junkfolder, trashfolder, usetrash)>
<!ELEMENT fullname (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT replyto (#PCDATA)>
<!ELEMENT messagecnt (value, default)>
<!ELEMENT composewidth (value, default)>
<!ELEMENT composeheight (value, default)>
<!ELEMENT sentfolder (#PCDATA)>
<!ELEMENT savesent (value, default, optionlist)>
<!ELEMENT replyopt (value, default, optionlist)>
<!ELEMENT signature (#PCDATA)>
<!ELEMENT includesig (value, default, optionlist)>
<!ELEMENT version (value, default, optionlist)>
<!ELEMENT timezone (#PCDATA)>
<!ELEMENT charset (value, default, optionlist)>
<!ELEMENT draftfolder (#PCDATA)>
<!ELEMENT junkfolder (#PCDATA)>
<!ELEMENT trashfolder (#PCDATA)>
<!ELEMENT usetrash (value, default, optionlist)>
<!ELEMENT value (#PCDATA)>
<!ELEMENT default (#PCDATA)>
<!ELEMENT optionlist (option*)>
<!ELEMENT option (#PCDATA)>

rfc822.dtd
<!ELEMENT rfc822 (#PCDATA)>

status.dtd
<!ELEMENT status (mailbox+)>
 <!ELEMENT mailbox (name, unread, count, quota_used, quota_limit)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT unread (#PCDATA)>
 105

A
Mirapoint DTDs
 <!ELEMENT count (#PCDATA)>
 <!ELEMENT quota_used (#PCDATA)>
 <!ELEMENT quota_limit (#PCDATA)>

Address Book DTD
The status DTD is included in the single Address Book DTD.

addrbook.dtd
<!-- Contacts: -->
<!ELEMENT persons (person | deleted-person)*>
<!ATTLIST persons count CDATA #REQUIRED>

<!ELEMENT person (category |
 cn |
 surname |
 givenname |
 nickname |
 displayname |
 mail |
 postaladdress |
 locality |
 state |
 postalcode |
 country |
 organization |
 organizationalunit |
 title |
 homeurl |
 telephonenumber |
 homephone |
 mobile |
 pager |
 facsimiletelephonenumber |
 primaryphone |
 anniversaryday |
 anniversarymonth |
 anniversaryyear |
 birthday |
 birthmonth |
 birthyear |
 description |
 uuid |
 lastmodtime)*>
<!ATTLIST person ref CDATA #REQUIRED>

<!ELEMENT cn (#PCDATA)>
<!ELEMENT surname (#PCDATA)>
<!ELEMENT givenname (#PCDATA)>
<!ELEMENT nickname (#PCDATA)>
<!ELEMENT displayname (#PCDATA)>
<!ELEMENT mail (#PCDATA)>
<!ELEMENT postaladdress (#PCDATA)>
<!ELEMENT locality (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT postalcode (#PCDATA)>
<!ELEMENT country (#PCDATA)>
<!ELEMENT organization (#PCDATA)>
<!ELEMENT organizationalunit (#PCDATA)>
<!ELEMENT title (#PCDATA)>
106

 Address Book DTD
<!ELEMENT homeurl (#PCDATA)>
<!ELEMENT telephonenumber (#PCDATA)>
<!ATTLIST telephonenumber primary (primary|yes|no) #IMPLIED>
<!ELEMENT homephone (#PCDATA)>
<!ATTLIST homephone primary (primary|yes|no) #IMPLIED>
<!ELEMENT mobile (#PCDATA)>
<!ATTLIST mobile primary (primary|yes|no) #IMPLIED>
<!ELEMENT pager (#PCDATA)>
<!ATTLIST pager primary (primary|yes|no) #IMPLIED>
<!ELEMENT facsimiletelephonenumber (#PCDATA)>
<!ATTLIST facsimiletelephonenumber primary (primary|yes|no) #IMPLIED>
<!ELEMENT primaryphone (#PCDATA|default|optionlist)*>
<!ELEMENT anniversaryday (#PCDATA)>
<!ELEMENT anniversarymonth (#PCDATA)>
<!ELEMENT anniversaryyear (#PCDATA)>
<!ELEMENT birthday (#PCDATA)>
<!ELEMENT birthmonth (#PCDATA)>
<!ELEMENT birthyear (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT uuid (#PCDATA)>
<!ELEMENT lastmodtime (#PCDATA)>

<!ELEMENT deleted-person EMPTY>
<!ATTLIST deleted-person ref CDATA #REQUIRED>

<!-- Groups: -->
<!ELEMENT groupsofnames (groupofnames)*>
<!ATTLIST groupsofnames count CDATA #REQUIRED>

<!ELEMENT groupofnames (cn , member*)>
<!ATTLIST groupofnames ref CDATA #REQUIRED
 count CDATA #REQUIRED>

<!ELEMENT member (#PCDATA)>
<!ATTLIST member ref CDATA #REQUIRED>

<!-- Categories: -->
<!ELEMENT categories (category)*>
<!ATTLIST categories count CDATA #REQUIRED>

<!ELEMENT category (#PCDATA | cn | index | count)*>
<!ATTLIST category unfiled (unfiled|yes|no) #IMPLIED>

<!ELEMENT index (#PCDATA)>
<!ELEMENT count (#PCDATA)>

<!-- Letter Categories: -->
<!ELEMENT letters (letter)*>
<!ATTLIST letters count CDATA #REQUIRED>

<!ELEMENT letter (cn | count)*>

<!-- Import Result: -->
<!ELEMENT import (recordcount|personcount|groupcount)*>
<!ATTLIST import file CDATA #REQUIRED>

<!ELEMENT recordcount (#PCDATA)>
<!ELEMENT personcount (#PCDATA)>
<!ELEMENT groupcount (#PCDATA)>

<!-- Export Result: -->
<!ELEMENT export (#PCDATA)>
<!ATTLIST export file CDATA #REQUIRED>
 107

A
Mirapoint DTDs
<!-- Search Results: -->
<!ELEMENT searchresult (search,(persons|groupsofnames)*)>
<!ATTLIST searchresult resultcount CDATA #IMPLIED
 personcount CDATA #IMPLIED
 groupcount CDATA #IMPLIED>

<!ELEMENT search (namepattern|mailpattern|phonepattern|addresspattern|
 otherpattern|
 grouppattern|memberref)*>

<!ELEMENT namepattern (#PCDATA)>
<!ELEMENT mailpattern (#PCDATA)>
<!ELEMENT phonepattern (#PCDATA)>
<!ELEMENT addresspattern (#PCDATA)>
<!ELEMENT otherpattern (#PCDATA)>
<!ELEMENT grouppattern (#PCDATA)>
<!ELEMENT memberref (#PCDATA)>

<!-- Options/Preferences: -->
<!ELEMENT preferences (charset|language|format|fieldname|
 conflict|detail|modtype|csvfield|
 primaryphone)*>

<!ELEMENT charset (default|optionlist)*>
<!ELEMENT language (optionlist)*>
<!ELEMENT format (optionlist)*>
<!ELEMENT fieldname (optionlist)*>
<!ELEMENT conflict (optionlist)*>
<!ELEMENT detail (optionlist)*>
<!ELEMENT modtype (optionlist)*>
<!ELEMENT csvfield (optionlist)*>

<!ELEMENT optionlist (option)*>
<!ELEMENT option (#PCDATA)>

<!ELEMENT default (#PCDATA)>

<!-- Status: -->
<!ELEMENT ok (#PCDATA)>
<!ELEMENT no (#PCDATA)>
<!ELEMENT bad (#PCDATA)>

<!-- SessionID: -->
<!ELEMENT sid (#PCDATA)>

<!-- Version: -->
<!ELEMENT version (interface,mos)>
<!ELEMENT interface (#PCDATA)>
<!ELEMENT mos (#PCDATA)>
108

	Developer’s Reference (XML)
	Contents
	Tables
	Preface
	About This XML Guide
	About Mirapoint Documentation
	Getting Customer Support
	Typographic Conventions

	Mirapoint XML Overview
	Mirapoint XML APIs Overview
	Calendar XML APIs
	WebMail XML APIs
	Address Book XML APIs
	HTTP Operations
	XML API Conventions
	Argument Modifiers
	Argument Character Encoding

	Global XML Response Elements
	status Response Elements
	<ok> Element
	Syntax
	Example

	<no> Element
	Syntax
	Example

	<bad> Element
	Syntax
	Example

	XML Interface to the WebCal Group Calendar
	Date and Time Representation
	Deleting Entries
	Repeating Events
	Calendaring Operations Summary
	DTD Summary

	Commands
	changepartstat Command
	changepartstat Example

	checkperms Command
	checkperms Example

	deletedaterange Command
	deletedaterange Example

	deleteevent Command
	deleteevent Example

	deletetodo Command
	deletetodo Example

	finduser Command
	finduser Example

	freebusy Command
	freebusy Example

	getchanges Command
	getchanges Example

	getevents Command
	getevents Example

	gettodos Command
	gettodos Example

	localelist Command
	localelist Example

	login Command
	login Example
	HTTP Redirection on Login
	Example

	permissions Command
	permissions Example

	prefs Command
	Example: GET Response
	Example: POST Response

	search Command
	search example

	subscriptions Command
	subscriptions Example
	Example: POST Response

	time Command
	time Example

	updateevent Command
	updateevent Example

	updatetodo Command
	updatetodo Example

	vcalexport Command
	vcalexport Example

	vcalimport Command
	vcalimport example

	version Command
	version Example

	viewother Command
	viewother Example

	XML Interface to the Mirapoint Message Base
	Message Addressing
	Specifying msgids
	Specifying uids
	Specifying msgid Ranges

	Commands
	append Command
	body Command
	Possible Errors
	Body Element
	Example

	bodystructure Command
	Result
	Possible Errors
	Example: Response Returned from Server
	Structure Element -Body Structure

	compose Command
	Notes
	Possible Errors
	Example
	Sample Response

	expunge Command
	Possible Errors
	Example: Valid Response

	index Command
	Possible Errors
	Index Element
	Example

	login Command
	Possible Errors
	Example: Valid Response
	SID Element - Session ID
	HTTP Redirection On Login
	Example

	mailbox Command
	Possible Errors
	Examples: Valid Responses

	mailboxlist Command
	Possible errors
	Example
	Mailboxlist Element
	Possible Errors
	Example

	preferences Command (GET)
	Possible Errors
	Example

	preferences Command (POST)
	Possible Errors
	Example of Valid Operation

	RFC822 Command
	Possible Errors
	Example

	search Command
	Possible Errors
	Example: When No Messages Match Search Criteria

	setflags Command
	Possible Errors
	Example: Valid Response

	status Command
	Possible Errors
	Example
	Status Element

	transfer Command
	Possible Errors
	Example

	XML Interface to the WebMail Address Book
	Command Parameters
	Commands
	category Commands
	get_categories Command
	Result

	add_category Command
	Result

	mod_category Command
	Result

	del_categories Command
	Result

	get_letter_categories Command
	Result

	contact Commands
	get_contacts Command
	Result

	add_contact Command
	Result

	mod_contact
	Result

	del_contacts Command
	Result

	group Commands
	get_groups Command
	Result

	add_group Command
	Result

	mod_group Command
	Result

	del_groups Command
	Result

	import/export Commands
	export Command
	Result

	import Command
	Result

	preferences Command
	prefs Command
	Result

	search Command
	search Command
	Result

	version Command
	version Command
	Result

	Mirapoint DTDs
	Status DTD
	WebCal Group Calendar DTD
	calendar.dtd
	changes.dtd
	freebusy.dtd
	localelist.dtd
	login.dtd
	permissions.dtd
	preferences.dtd
	status.dtd
	update.dtd
	userlist.dtd
	version.dtd
	viewother.dtd

	Mirapoint Message Base DTDs
	bad.dtd
	body.dtd
	bodystructure.dtd
	imap_genlist.dtd
	indexlist.dtd
	login.dtd
	mailboxlist.dtd
	no.dtd
	ok.dtd
	preferences.dtd
	rfc822.dtd
	status.dtd

	Address Book DTD
	addrbook.dtd

